Abstract
A population of characteristic ellipsoidal dense-core vesicles was identified in axons of the giant cerebral neuron of the mollusc Aplysia. We injected [3H]serotonin into the cell body of this identified serotonergic neuron in the isolated central nervous system in order to study the subcellular components associated with the neurotransmitter. Subcellular fractionation by differential centrifugation indicated that injected serotonin was rapidly taken up into particulate form. [3H]Serotonin appeared in the axons within 2 h after injection, and export continued at a constant rate of 6% of the total in the neuron/h thereafter. The dependence of the total amounts of [3H]serotonin which appeared in the axons in 6 h (export from the cell body) on the amounts injected was consistent with the idea that export is a saturable process, possibly depending on the capacity of somatic vesicles or of some unidentified carrier for serotonin. [3H]Serotonin moved into both major branches of the axon, where it was translocated rapidly. The transmitter, which was shown by autoradiography to be restricted to the axons of the injected cell, was distributed along axons in accumulations of radioactivity; in contrast, its precursor, [5-3H]hydroxytryptophan, moved slowly along axons in a smooth, declining curve, its kinetics consistent with diffusion. Quantitative electron microscope autoradiography revealed that the dense-core vesicles and the cytosol of axons fixed with glutaraldehyde were labeled with [3H]serotonin.
Full Text
The Full Text of this article is available as a PDF (3.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ambron R. T., Goldman J. E., Schwartz J. H. Axonal transport of newly synthesized glycoproteins in a single identified neuron of Aplysia californica. J Cell Biol. 1974 Jun;61(3):665–675. doi: 10.1083/jcb.61.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ambron R. T., Goldman J. E., Schwartz J. H. Effect of inhibiting protein synthesis on axonal transport of membrane glycoproteins in an identified neuron of Aplysia. Brain Res. 1975 Aug 29;94(2):307–323. doi: 10.1016/0006-8993(75)90064-5. [DOI] [PubMed] [Google Scholar]
- Bennett G., Di Giamberardino L., Koenig H. L., Droz B. Axonal migration of protein and glycoprotein to nerve endings. II. Radioautographic analysis of the renewal of glycoproteins in nerve endings of chicken ciliary ganglion after intracerebral injection of (3H)fucose and (3H)-glucosamine. Brain Res. 1973 Sep 28;60(1):129–146. doi: 10.1016/0006-8993(73)90853-6. [DOI] [PubMed] [Google Scholar]
- Dahlström A. Effect of colchicine on transport of amine storage granules in sympathetic nerves of rat. Eur J Pharmacol. 1968 Dec;5(1):111–113. doi: 10.1016/0014-2999(68)90165-9. [DOI] [PubMed] [Google Scholar]
- Eisenstadt M. L., Schwartz J. H. Metabolism of acetylcholine in the nervous system of Aplysia californica. III. Studies of an indentified cholinergic neuron. J Gen Physiol. 1975 Mar;65(3):293–213. doi: 10.1085/jgp.65.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenstadt M., Goldman J. E., Kandel E. R., Koike H., Koester J., Schwartz J. H. Intrasomatic injection of radioactive precursors for studying transmitter synthesis in identified neurons of Aplysia californica. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3371–3375. doi: 10.1073/pnas.70.12.3371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elam J. S., Agranoff B. W. Transport of proteins and sulfated mucopolysaccharides in the goldfish visual system. J Neurobiol. 1971;2(4):379–390. doi: 10.1002/neu.480020409. [DOI] [PubMed] [Google Scholar]
- FRASCA J. M., PARKS V. R. A ROUTINE TECHNIQUE FOR DOUBLE-STAINING ULTRATHIN SECTIONS USING URANYL AND LEAD SALTS. J Cell Biol. 1965 Apr;25:157–161. doi: 10.1083/jcb.25.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fibiger H. C., McGeer E. G., Atmadja S. Axoplasmic transport of dopamine in nigro-striatal neurons. J Neurochem. 1973 Aug;21(2):373–385. doi: 10.1111/j.1471-4159.1973.tb04257.x. [DOI] [PubMed] [Google Scholar]
- Forman D. S., Grafstein B., McEwen B. S. Rapid axonal transport of ( 3 H)fucosyl glycoproteins in the goldfish optic system. Brain Res. 1972 Dec 24;48:327–342. doi: 10.1016/0006-8993(72)90187-4. [DOI] [PubMed] [Google Scholar]
- GERSCHENFELD H. M. Observations on the ultrastructure of synapses in some pulmonate molluscs. Z Zellforsch Mikrosk Anat. 1963;60:258–275. doi: 10.1007/BF00350480. [DOI] [PubMed] [Google Scholar]
- Geffen L. B., Livett B. G. Synaptic vesicles in sympathetic neurons. Physiol Rev. 1971 Jan;51(1):98–157. doi: 10.1152/physrev.1971.51.1.98. [DOI] [PubMed] [Google Scholar]
- Geffen L. B., Rush R. A. Transport of noradrenaline in sympathetic nerves and the effect of nerve impulses on its contribution to transmitter stores. J Neurochem. 1968 Sep;15(9):925–930. doi: 10.1111/j.1471-4159.1968.tb11634.x. [DOI] [PubMed] [Google Scholar]
- Gershon M. D., Ross L. L. Radioisotopic studies of the binding, exchange, and distribution of 5-hydroxytryptamine synthesized from its radioactive precursor. J Physiol. 1966 Oct;186(2):451–476. doi: 10.1113/jphysiol.1966.sp008046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giller E., Jr, Schwartz J. H. Choline acetyltransferase in identified neurons of abdominal ganglion of Aplysia californica. J Neurophysiol. 1971 Jan;34(1):93–107. doi: 10.1152/jn.1971.34.1.93. [DOI] [PubMed] [Google Scholar]
- Goldman J. E., Schwartz J. H. Cellular specificity of serotonin storage and axonal transport in identified neurones of Aplysia californica. J Physiol. 1974 Oct;242(1):61–76. doi: 10.1113/jphysiol.1974.sp010694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howes E. A., McLaughlin B. J., Heslop J. P. The autoradiographical assoc-iation of fast transported material with dense core vesicles in the central nervous system of Anodonta cygnea (l). Cell Tissue Res. 1974;153(4):545–558. doi: 10.1007/BF00231546. [DOI] [PubMed] [Google Scholar]
- Jaim-Etcheverry G., Zieher L. M. Ultrastructural aspects of neurotransmitter storage in adrenergic nerves. Adv Cytopharmacol. 1971 May;1:343–361. [PubMed] [Google Scholar]
- James K. A., Bray J. J., Morgan I. G., Austin L. The effect of colchicine on the transport of axonal protein in the chicken. Biochem J. 1970 May;117(4):767–771. doi: 10.1042/bj1170767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kandel E. R., Tauc L. Anomalous rectification in the metacerebral giant cells and its consequences for synaptic transmission. J Physiol. 1966 Mar;183(2):287–304. doi: 10.1113/jphysiol.1966.sp007867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kandel E. R., Tauc L. Input organization of two symmetrical giant cells in the snail brain. J Physiol. 1966 Mar;183(2):269–286. doi: 10.1113/jphysiol.1966.sp007866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapeller K., Mayor D. The accumulation of noradrenaline in constricted sympathetic nerves as studied by fluorescence and electron microscopy. Proc R Soc Lond B Biol Sci. 1967 Mar 28;167(1008):282–292. doi: 10.1098/rspb.1967.0027. [DOI] [PubMed] [Google Scholar]
- Karlsson J. O., Sjöstrand J. The effect of colchicine on the axonal transport of protein in the optic nerve and tract of the rabbit. Brain Res. 1969 May;13(3):617–619. doi: 10.1016/0006-8993(69)90274-1. [DOI] [PubMed] [Google Scholar]
- Koike H., Eisenstadt M., Schwartz J. H. Axonal transport of newly synthesized acetylcholine in an identified neuron of Aplysia. Brain Res. 1972 Feb 11;37(1):152–159. doi: 10.1016/0006-8993(72)90359-9. [DOI] [PubMed] [Google Scholar]
- Kreutzberg G. W. Neuronal dynamics and axonal flow. IV. Blockage of intra-axonal enzyme transport by colchicine. Proc Natl Acad Sci U S A. 1969 Mar;62(3):722–728. doi: 10.1073/pnas.62.3.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kriegstein A. R., Castellucci V., Kandel E. R. Metamorphosis of Aplysia californica in laboratory culture. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3654–3658. doi: 10.1073/pnas.71.9.3654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liebeswar G., Goldman J. E., Koester J., Mayeri E. Neural control of circulation in Aplysia. III. Neurotransmitters. J Neurophysiol. 1975 Jul;38(4):767–779. doi: 10.1152/jn.1975.38.4.767. [DOI] [PubMed] [Google Scholar]
- McCaman M. W., McCaman R. E., Lees G. J. Liquid cation exchange--a basis for sensitive radiometric assays for aromatic amino acid decarboxylases. Anal Biochem. 1972 Jan;45(1):242–252. doi: 10.1016/0003-2697(72)90024-3. [DOI] [PubMed] [Google Scholar]
- McEwen B. S., Grafstein B. Fast and slow components in axonal transport of protein. J Cell Biol. 1968 Sep;38(3):494–508. doi: 10.1083/jcb.38.3.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NATHANS D., NOTANI G., SCHWARTZ J. H., ZINDER N. D. Biosynthesis of the coat protein of coliphage f2 by E. coli extracts. Proc Natl Acad Sci U S A. 1962 Aug;48:1424–1431. doi: 10.1073/pnas.48.8.1424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paupardin-Tritsch D., Gerschenfeld H. M. Transmitter role of serotonin in identified synapses in Aplysia nervous system. Brain Res. 1973 Aug 30;58(2):529–534. doi: 10.1016/0006-8993(73)90027-9. [DOI] [PubMed] [Google Scholar]
- Pentreath V. W., Berry M. S. Ultrastructure of the terminals of an identified dopamine-containing neurone markedby intracellular injection of radioactive dopamine. J Neurocytol. 1975 Jun;4(3):249–260. doi: 10.1007/BF01102111. [DOI] [PubMed] [Google Scholar]
- Pentreath V. W., Cottrell G. A. Anatomy of an identified serotonin neurone studied by means of injection of tritiated 'transmitter'. Nature. 1974 Aug 23;250(5468):655–658. doi: 10.1038/250655a0. [DOI] [PubMed] [Google Scholar]
- Pentreath V. W., Osborne N. N., Cottrell G. A. Anatomy of giant serotonin-containing neurones in the cerebral ganglia of Helis pomatia and Limax maximus. Z Zellforsch Mikrosk Anat. 1973;143(1):1–20. doi: 10.1007/BF00307447. [DOI] [PubMed] [Google Scholar]
- Pitman R. M., Tweedle C. D., Cohen M. J. Branching of central neurons: intracellular cobalt injection for light and electron microscopy. Science. 1972 Apr 28;176(4033):412–414. doi: 10.1126/science.176.4033.412. [DOI] [PubMed] [Google Scholar]
- Schubert P., Lux H. D., Kreutzberg G. W. Single cell isotope injection technique, a tool for studying axonal and dendritic transport. Acta Neuropathol. 1971;5(Suppl):179–186. doi: 10.1007/978-3-642-47449-1_23. [DOI] [PubMed] [Google Scholar]
- Weinreich D., McCaman M. W., McCaman R. E., Vaughn J. E. Chemical, enzymatic and ultrastructural characterization of 5-hydroxytryptamine-containing neurons from the ganglia of Aplysia californica and Tritionia diomedia. J Neurochem. 1973 Apr;20(4):969–976. doi: 10.1111/j.1471-4159.1973.tb00067.x. [DOI] [PubMed] [Google Scholar]
- Weiss K. R., Cohen J., Kupfermann I. Potentiation of muscle contraction: a possible modulatory function of an identified serotonergic cell in Aplysia. Brain Res. 1975 Dec 5;99(2):381–386. doi: 10.1016/0006-8993(75)90041-4. [DOI] [PubMed] [Google Scholar]