Abstract
Vascular endothelial cells cultured from guinea pig aorta or portal vein contain naturally occurring bundles of 100 A (diameter) filaments that completely encircle the nucleus. These rings are phase lucent and birefringent when examined with the light microscope. Perinuclear bundles of 100 A filaments were also seen in endothelial cells in vivo, indicating that they are a normal cytoplasmic component. These filaments did not decorate with S-1, and were not disrupted by glyceination. With these cells, experiments were designed to answer the following questions: (a) does Colcemid have an effect on these naturally occuring bundles? And (b) do these filaments remain during cell division? Endothelial cells grown in the presence of Colcemid were followed over 24 h. The perinuclear ring coiled into a juxtanuclear cap that consisted of disorganized arrays of 100 A filaments. This "coiling" effect was not blocked by cycloheximide, an inhibitor of protein synthesis. In another experiment, dividing cells were examined. During division the bundle of filaments is passively pulled in half into the daughter cells. These bundles did not disappear during the mitosis when mitotic spindle microtubules assemble. These studies suggest that Colcemid may exert a direct effect on 100 A filaments, independent of microtubules. Since these filaments do not disappear during mitosis, it is possible that in these cells the 100 A filaments and tubulin do not share a common pool of precursor proteins.
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLEN E. R., PEPE F. A. ULTRASTRUCTURE OF DEVELOPING MUSCLE CELLS IN THE CHICK EMBRYO. Am J Anat. 1965 Jan;116:115–147. doi: 10.1002/aja.1001160107. [DOI] [PubMed] [Google Scholar]
- Anderson H. C., Chacko S., Abbott J., Holtzer H. The loss of phenotypic traits by differentiated cells in vitro. VII. Effects of 5-bromodeoxyuridine and prolonged culturing on fine structure of chondrocytes. Am J Pathol. 1970 Aug;60(2):289–312. [PMC free article] [PubMed] [Google Scholar]
- Cooke P. H., Chase R. H. Potassium chloride-insoluble myofilaments in vertebrate smooth muscle cells. Exp Cell Res. 1971 Jun;66(2):417–425. doi: 10.1016/0014-4827(71)90696-3. [DOI] [PubMed] [Google Scholar]
- Croop J., Holtzer H. Response of myogenic and fibrogenic cells to cytochalasin B and to colcemid. I. Light microscope observations. J Cell Biol. 1975 May;65(2):271–285. doi: 10.1083/jcb.65.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniels M. P. Fine structural changes in neurons and nerve fibers associated with colchicine inhibition of nerve fiber formation in vitro. J Cell Biol. 1973 Aug;58(2):463–470. doi: 10.1083/jcb.58.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Bruyn P. P., Cho Y. Contractile structures in endothelial cells of splenic sinusoids. J Ultrastruct Res. 1974 Oct;49(1):24–33. doi: 10.1016/s0022-5320(74)90075-6. [DOI] [PubMed] [Google Scholar]
- DeBrabander M., Aerts F., Van de Veire R., Borgers M. Evidence against interconversion of microtubules and filaments. Nature. 1975 Jan 10;253(5487):119–120. doi: 10.1038/253119a0. [DOI] [PubMed] [Google Scholar]
- Fine R. E., Blitz A. L., Hitchcock S. E., Kaminer B. Tropomyosin in brain and growing neurones. Nat New Biol. 1973 Oct 10;245(145):182–186. doi: 10.1038/newbio245182a0. [DOI] [PubMed] [Google Scholar]
- Goldman R. D. The role of three cytoplasmic fibers in BHK-21 cell motility. I. Microtubules and the effects of colchicine. J Cell Biol. 1971 Dec;51(3):752–762. doi: 10.1083/jcb.51.3.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haudenschild C. C., Cotran R. S., Gimbrone M. A., Jr, Folkman J. Fine structure of vascular endothelium in culture. J Ultrastruct Res. 1975 Jan;50(1):22–32. doi: 10.1016/s0022-5320(75)90004-0. [DOI] [PubMed] [Google Scholar]
- Holtrop M. E., Raisz L. G., Simmons H. A. The effects of parathyroid hormone, colchicine, and calcitonin on the ultrastructure and the activity of osteoclasts in organ culture. J Cell Biol. 1974 Feb;60(2):346–355. doi: 10.1083/jcb.60.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
- Ishikawa H., Bischoff R., Holtzer H. Mitosis and intermediate-sized filaments in developing skeletal muscle. J Cell Biol. 1968 Sep;38(3):538–555. doi: 10.1083/jcb.38.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lauweryns J. M., Baert J., De Loecker W. Fine filaments in lymphatic endothelial cells. J Cell Biol. 1976 Jan;68(1):163–167. doi: 10.1083/jcb.68.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leak L. V., Kato F. Electron microscopic studies of lymphatic capillaries during early inflammation. I. Mild and severe thermal injuries. Lab Invest. 1972 May;26(5):572–588. [PubMed] [Google Scholar]
- ROBBINS E., GONATAS N. K. HISTOCHEMICAL AND ULTRASTRUCTURAL STUDIES ON HELA CELL CULTURES EXPOSED TO SPINDLE INHIBITORS WITH SPECIAL REFERENCE TO THE INTERPHASE CELL. J Histochem Cytochem. 1964 Sep;12:704–711. doi: 10.1177/12.9.704. [DOI] [PubMed] [Google Scholar]
- Shimamoto T. New concept on atherogenesis and treatment of atherosclerotic diseases. Jpn Heart J. 1972 Nov;13(6):537–562. doi: 10.1536/ihj.13.537. [DOI] [PubMed] [Google Scholar]
- Somlyo A. P., Devine C. E., Somlyo A. V., Rice R. V. Filament organization in vertebrate smooth muscle. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):223–229. doi: 10.1098/rstb.1973.0027. [DOI] [PubMed] [Google Scholar]
- Sutton J. S. Ultrastructural aspects of in vitro development of monocytes into macrophages, epithelioid cells, and multinucleated giant cells. Natl Cancer Inst Monogr. 1967 Sep;26:71–141. [PubMed] [Google Scholar]
- TANAKA Y. FIBRILLAR STRUCTURES IN THE CELLS OF BLOODFORMING ORGANS. J Natl Cancer Inst. 1964 Sep;33:467–485. [PubMed] [Google Scholar]
- Wisniewski H., Shelanski M. L., Terry R. D. Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cells. J Cell Biol. 1968 Jul;38(1):224–229. doi: 10.1083/jcb.38.1.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yohro T., Burnstock G. Filament bundles and contractility of endothelial cells in coronary arteries. Z Zellforsch Mikrosk Anat. 1973 Mar 21;138(1):85–95. doi: 10.1007/BF00307080. [DOI] [PubMed] [Google Scholar]