Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Sep 1;70(3):634–647. doi: 10.1083/jcb.70.3.634

Cell to substratum adhesion-promoting activity released by normal and virus-transformed cells in culture

PMCID: PMC2109843  PMID: 182700

Abstract

It is demonstrated here that cultured fibroblasts release into their medium a nondialyzable, protease-sensitive factor(s) capable of promoting the adhesion and spreading of virus-transformed rat fibroblasts on a plastic substratum. A relatively sensitive biological assay is described for quantitation of the adhesion-promoting factor (APF) activity in serum-free, conditioned medium harvested from the cultures. Evidence is presented which indicates that the primary mode of action of the APF is by binding to and modifying the properties of the substratum. Conditioned media harvested after 24 h of incubation in similarly populated cultures of normal fibroblasts of diverse animal species exhibited similar levels of APF activity. However, conditioned media obtained from Rous sarcoma virus (Prague strain)-transformed and avian sarcoma virus B77-transformed rat fibroblasts exhibited three- to sixfold lower levels of APF activity than media conditioned in parallel cultures of heterologous or homologous normal fibroblasts. Cultivation of B77 virus-transformed rat cells in the presence of dibutyryl cyclic AMP and theophylline led to as much as a sevenfold increase in the level of APF activity appearing in the culture medium, with a concomitant increase in the adhesiveness of the cells to the culture substratum. The results support the role of extracellular macromolecules in cell to substratum adhesion. It is postulated that the reduced adhesiveness of transformed cells to a substratum may be at least partially owing to a deficiency in the production and/or release of APF-like macromolecules.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABERCROMBIE M., AMBROSE E. J. The surface properties of cancer cells: a review. Cancer Res. 1962 Jun;22:525–548. [PubMed] [Google Scholar]
  2. Abercrombie M. Contact inhibition in tissue culture. In Vitro. 1970 Sep-Oct;6(2):128–142. doi: 10.1007/BF02616114. [DOI] [PubMed] [Google Scholar]
  3. Altaner C., Temin H. M. Carcinogenesis by RNA sarcoma viruses. XII. A quantitative study of infection of rat cells in vitro by avian sarcoma viruses. Virology. 1970 Jan;40(1):118–134. doi: 10.1016/0042-6822(70)90384-3. [DOI] [PubMed] [Google Scholar]
  4. Apffel C. A., Peters J. H. Tumors and serum glycoproteins. The 'symbodies'. Prog Exp Tumor Res. 1969;12:1–54. [PubMed] [Google Scholar]
  5. Bosmann H. B., Case K. R., Morgan H. R. Surface biochemical changes accompanying primary infection with Rous sarcoma virus. I. Electrokinetic properties of cells and cell surface glycoprotein:glycosyl transferase activities. Exp Cell Res. 1974 Jan;83(1):15–24. doi: 10.1016/0014-4827(74)90682-x. [DOI] [PubMed] [Google Scholar]
  6. CURTIS A. S. Cell contact and adhesion. Biol Rev Camb Philos Soc. 1962 Feb;37:82–129. doi: 10.1111/j.1469-185x.1962.tb01605.x. [DOI] [PubMed] [Google Scholar]
  7. Carter S. B. Principles of cell motility: the direction of cell movement and cancer invasion. Nature. 1965 Dec 18;208(5016):1183–1187. doi: 10.1038/2081183a0. [DOI] [PubMed] [Google Scholar]
  8. Culp L. A., Black P. H. Release of macromolecules from BALB-c mouse cell lines treated with chelating agents. Biochemistry. 1972 May 23;11(11):2161–2172. doi: 10.1021/bi00761a024. [DOI] [PubMed] [Google Scholar]
  9. Culp L. A. Substrate-attached glycoproteins mediating adhesion of normal and virus-transformed mouse fibroblasts. J Cell Biol. 1974 Oct;63(1):71–83. doi: 10.1083/jcb.63.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. EASTY G. C., EASTY D. M., AMBROSE E. J. Studies of cellular adhesiveness. Exp Cell Res. 1960 Apr;19:539–548. doi: 10.1016/0014-4827(60)90062-8. [DOI] [PubMed] [Google Scholar]
  11. Fisher H. W., Puck T. T., Sato G. MOLECULAR GROWTH REQUIREMENTS OF SINGLE MAMMALIAN CELLS: THE ACTION OF FETUIN IN PROMOTING CELL ATTACHMENT TO GLASS. Proc Natl Acad Sci U S A. 1958 Jan;44(1):4–10. doi: 10.1073/pnas.44.1.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gail M. H., Boone C. W. Cell-substrate adhesivity. A determinant of cell motility. Exp Cell Res. 1972 Jan;70(1):33–40. doi: 10.1016/0014-4827(72)90178-4. [DOI] [PubMed] [Google Scholar]
  13. Halpern M., Rubin H. Proteins released from chick embryo fibroblasts in culture. I. Partial characterization of the proteins. Exp Cell Res. 1970 Apr;60(1):86–95. doi: 10.1016/0014-4827(70)90491-x. [DOI] [PubMed] [Google Scholar]
  14. Hsie A. W., Puck T. T. Morphological transformation of Chinese hamster cells by dibutyryl adenosine cyclic 3':5'-monophosphate and testosterone. Proc Natl Acad Sci U S A. 1971 Feb;68(2):358–361. doi: 10.1073/pnas.68.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnson G. S., Friedman R. M., Pastan I. Restoration of several morphological characteristics of normal fibroblasts in sarcoma cells treated with adenosine-3':5'-cyclic monphosphate and its derivatives. Proc Natl Acad Sci U S A. 1971 Feb;68(2):425–429. doi: 10.1073/pnas.68.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johnson G. S., Morgan W. D., Pastan I. Regulation of cell motility by cyclic AMP. Nature. 1972 Jan 7;235(5332):54–56. doi: 10.1038/235054a0. [DOI] [PubMed] [Google Scholar]
  17. Johnson G. S., Pastan I. Role of 3',5'-adenosine monophosphate in regulation of morphology and growth of transformed and normal fibroblasts. J Natl Cancer Inst. 1972 May;48(5):1377–1387. [PubMed] [Google Scholar]
  18. Kapeller M., Gal-Oz R., Grover N. B., Doljanski F. Natural shedding of carbohydrate-containing macromolecules from cell surfaces. Exp Cell Res. 1973 Apr;79(1):152–158. [PubMed] [Google Scholar]
  19. LIEBERMAN I., OVE P. Catalase requirement for mammalian cells in culture. J Exp Med. 1958 Nov 1;108(5):631–637. doi: 10.1084/jem.108.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Lilien J. E., Moscona A. A. Cell aggregation: its enhancement by a supernatant from cultures of homologous cells. Science. 1967 Jul 7;157(3784):70–72. doi: 10.1126/science.157.3784.70. [DOI] [PubMed] [Google Scholar]
  22. MACPHERSON I., MONTAGNIER L. AGAR SUSPENSION CULTURE FOR THE SELECTIVE ASSAY OF CELLS TRANSFORMED BY POLYOMA VIRUS. Virology. 1964 Jun;23:291–294. doi: 10.1016/0042-6822(64)90301-0. [DOI] [PubMed] [Google Scholar]
  23. MOSCONA A. Rotation-mediated histogenetic aggregation of dissociated cells. A quantifiable approach to cell interactions in vitro. Exp Cell Res. 1961 Jan;22:455–475. doi: 10.1016/0014-4827(61)90122-7. [DOI] [PubMed] [Google Scholar]
  24. Martz E., Steinberg M. S. Contact inhibition of what? An analytical review. J Cell Physiol. 1973 Feb;81(1):25–37. doi: 10.1002/jcp.1040810104. [DOI] [PubMed] [Google Scholar]
  25. Onodera K., Sheinin R. Macromolecular glucosamine-containing component of the surface of cultivated mouse cells. J Cell Sci. 1970 Sep;7(2):337–355. doi: 10.1242/jcs.7.2.337. [DOI] [PubMed] [Google Scholar]
  26. Ruoslahti E., Vaheri A., Kuusela P., Linder E. Fibroblast surface antigen: a new serum protein. Biochim Biophys Acta. 1973 Oct 18;322(2):352–358. doi: 10.1016/0005-2795(73)90310-3. [DOI] [PubMed] [Google Scholar]
  27. Takeichi M. The factor affecting the spreading of chondrocytes upon inorganic substrate. J Cell Sci. 1973 Jul;13(1):193–204. doi: 10.1242/jcs.13.1.193. [DOI] [PubMed] [Google Scholar]
  28. WEISS L. Studies on cellular adhesion in tissue culture. IV. The alteration of substrata by cell surfaces. Exp Cell Res. 1961 Dec;25:504–517. doi: 10.1016/0014-4827(61)90186-0. [DOI] [PubMed] [Google Scholar]
  29. Weiss L. Cellular locomotive pressure in relation to initial cell contacts. J Theor Biol. 1964 Mar;6(2):275–281. doi: 10.1016/0022-5193(64)90033-5. [DOI] [PubMed] [Google Scholar]
  30. Willingham M. C., Carchman R. A., Pastan I. H. A mutant of 3T3 cells with cyclic AMP metabolism sensitive to temperature change. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2906–2910. doi: 10.1073/pnas.70.10.2906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wolpert L., Gingell D. Cell surface membrane and amoeboid movement. Symp Soc Exp Biol. 1968;22:169–198. [PubMed] [Google Scholar]
  32. Yang Y. Z., Perdue J. F. Contractile proteins of cultured cells. I. The isolation and characterization of an actin-like protein from cultured chick embryo fibroblasts. J Biol Chem. 1972 Jul 25;247(14):4503–4509. [PubMed] [Google Scholar]
  33. Yasuda K. Studies on the factors affecting cellular spreading upon culture-substrate. 1. The effects of divalent cations and conditioned medium on cellular spreading. J Cell Sci. 1974 Jul;15(2):269–278. doi: 10.1242/jcs.15.2.269. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES