Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Sep 1;70(3):515–526. doi: 10.1083/jcb.70.3.515

Lipid vesicle-cell interactions. III. Introduction of a new antigenic determinant into erythrocyte membranes

PMCID: PMC2109845  PMID: 60342

Abstract

The introduction of a new antigenic determinant, 2,4-dinitrophenyl- aminocaproyl-phosphatidylethanolamine (DNP-Cap-PE), into the surface membranes of intact human erythrocytes is described. Fresh cells were incubated in the presence of liposomes composed of 10% DNP-Cap-PE, 5% stearylamine, 20% lysolecithin, and 65% lecithin. Such liposome-treated erythrocytes are shown to be susceptible to immune lysis by anti-DNP serum in the presence of complement. Uptake of DNP-Cap-PE by erythrocyte membranes is also demonstrated by immunofluorescence using indirect staining with rabbit anti-DNP serum followed by fluroescein- conjugated goat anti-rabbit IgG and by electron microscopy using ferritin-conjugated antibody. Antigen uptake did not occur at low temperatures or from vesicles lacking lysolecithin and stearylamine. Fluorescence microscopy shows that the antigen-antibody complexes are free to diffuse over the cell surface, eventually coalescing into a single area on the cell membrane. Electron microscopy suggests that a substantial proportion of the lipid antigen is incorporated by fusion of vesicles with the cell membrane. There are indications that vesicle treatment causes a small proportion of cells to invaginate.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batzri S., Korn E. D. Interaction of phospholipid vesicles with cells. Endocytosis and fusion as alternate mechanisms for the uptake of lipid-soluble and water-soluble molecules. J Cell Biol. 1975 Sep;66(3):621–634. doi: 10.1083/jcb.66.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  3. Edidin M. Rotational and translational diffusion in membranes. Annu Rev Biophys Bioeng. 1974;3(0):179–201. doi: 10.1146/annurev.bb.03.060174.001143. [DOI] [PubMed] [Google Scholar]
  4. Grant C. W., McConnell H. M. Fusion of phospholipid vesicles with viable Acholeplasma laidlawii. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1238–1240. doi: 10.1073/pnas.70.4.1238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Howe C., Morgan C. Interactions between Sendai virus and human erythrocytes. J Virol. 1969 Jan;3(1):70–81. doi: 10.1128/jvi.3.1.70-81.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Huang L., Pagano R. E. Interaction of phospholipid vesicles with cultured mammalial cells. I. Characteristics of uptake. J Cell Biol. 1975 Oct;67(1):38–48. doi: 10.1083/jcb.67.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Inbar M., Shinitzky M. Increase of cholesterol level in the surface membrane of lymphoma cells and its inhibitory effect on ascites tumor development. Proc Natl Acad Sci U S A. 1974 May;71(5):2128–2130. doi: 10.1073/pnas.71.5.2128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Magee W. E., Goff C. W., Schoknecht J., Smith M. D., Cherian K. The interaction of cationic liposomes containing entrapped horseradish peroxidase with cells in culture. J Cell Biol. 1974 Nov;63(2 Pt 1):492–504. doi: 10.1083/jcb.63.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Martin F. J., MacDonald R. C. Lipid vesicle-cell interactions. I. Hemagglutination and hemolysis. J Cell Biol. 1976 Sep;70(3):494–505. doi: 10.1083/jcb.70.3.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Martin F. J., MacDonald R. C. Lipid vesicle-cell interactions. II. Induction of cell fusion. J Cell Biol. 1976 Sep;70(3):506–514. doi: 10.1083/jcb.70.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Martin F. J., MacDonald R. C. Phospholipid exchange between bilayer membrane vesicles. Biochemistry. 1976 Jan 27;15(2):321–327. doi: 10.1021/bi00647a013. [DOI] [PubMed] [Google Scholar]
  12. Martin F., MacDonald R. Liposomes can mimic virus membranes. Nature. 1974 Nov 8;252(5479):161–163. doi: 10.1038/252161a0. [DOI] [PubMed] [Google Scholar]
  13. Pagano R. E., Huang L. Interaction of phospholipid vesicles with cultured mammalian cells. II. Studies of mechanism. J Cell Biol. 1975 Oct;67(1):49–60. doi: 10.1083/jcb.67.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Papahadjopoulos D., Mayhew E., Poste G., Smith S., Vail W. J. Incorporation of lipid vesicles by mammalian cells provides a potential method for modifying cell behaviour. Nature. 1974 Nov 8;252(5479):163–166. doi: 10.1038/252163a0. [DOI] [PubMed] [Google Scholar]
  15. Six H. R., Uemura K. I., Kinsky S. C. Effect of immunoglobulin class and affinity on the initiation of complement-dependent damage to liposomal model membranes sensitized with dinitrophenylated phospholipids. Biochemistry. 1973 Sep 25;12(20):4003–4011. doi: 10.1021/bi00744a034. [DOI] [PubMed] [Google Scholar]
  16. Uemura K., Claflin J. L., Davie J. M., Kinsky S. C. Immune response to liposomal model membranes: restricted IgM and IgG anti-dinitrophenyl antibodies produced in guinea pigs. J Immunol. 1975 Mar;114(3):958–961. [PubMed] [Google Scholar]
  17. Uemura K., Kinsky S. C. Active vs. passive sensitization of liposomes toward antibody and complement by dinitrophenylated derivatives of phosphatidylethanolamine. Biochemistry. 1972 Oct 24;11(22):4085–4094. doi: 10.1021/bi00772a010. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES