Abstract
The distribution of adenylate cyclase (AC) in Golgi and other cell fractions from rat liver was studied using the Golgi isolation procedure of Ehrenreich et al. In liver homogenate the AC activity was found to decay with time, but addition of 1 mM EGTA reduced the rate of enzyme loss. The incorporation of 1 mM EGTA into the sucrose medium used in the initial two centrifugal steps of the Golgi isolation method stabilized the enzyme activity throughout the entire procedure and resulted in good enzyme recovery. In such preparations, AC activity was demonstrated to be associated not only with plasma membranes but also with Golgi membranes and smooth microsomal membranes as well. Furthermore, under the conditions used, enzyme activity was also associated with the 105,000 g x 90 min supernatant fraction. The specific activity of the liver homogenate was found to be 2.9 pmol-mg protein-1-min-1, the nonsedimentabel and microsomal activity was of the same order of magnitude, but the Golgi and plasma membrane activities were much higher. The specific activity of plasma membrane AC was 29 pmol-mg proten-1-min-1. The Golgi activity varied in the three fractions, with the highest activity (14 pmol) in GF1 lowest activity (1.8) in GF2, and intermediate activity (5.5) in GF3, when the Golgi activity was corrected for the presence of content protein, the activity in GF1 became much higher (9 x) than that of the plasma membrane while the activities in GF2 and GF3 were comparable to that of plasma membrane. In all locations studied, the AC was sensitive to NaF stimulation, especially the enzyme associated with Golgi membranes. The activities in plasma and microsomal membranes were stimulated by glucagon, whereas the Golgi and nonsedimentable AC were not.
Full Text
The Full Text of this article is available as a PDF (734.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelman M. R., Blobel G., Sabatini D. D. An improved cell fractionation procedure for the preparation of rat liver membrane-bound ribosomes. J Cell Biol. 1973 Jan;56(1):191–205. doi: 10.1083/jcb.56.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergeron J. J., Ehrenreich J. H., Siekevitz P., Palade G. E. Golgi fractions prepared from rat liver homogenates. II. Biochemical characterization. J Cell Biol. 1973 Oct;59(1):73–88. doi: 10.1083/jcb.59.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergeron J. J., Evans W. H., Geschwind I. I. Insulin binding to rat liver Golgi fractions. J Cell Biol. 1973 Dec;59(3):771–776. doi: 10.1083/jcb.59.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birnbaumer L., Pohl S. L., Rodbell M. Adenyl cyclase in fat cells. 1. Properties and the effects of adrenocorticotropin and fluoride. J Biol Chem. 1969 Jul 10;244(13):3468–3476. [PubMed] [Google Scholar]
- Birnbaumer L., Pohl S. L., Rodbell M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. II. Comparison between glucagon- and fluoride-stimulated activities. J Biol Chem. 1971 Mar 25;246(6):1857–1860. [PubMed] [Google Scholar]
- Birnbaumer L., Rodbell M. Adenyl cyclase in fat cells. II. Hormone receptors. J Biol Chem. 1969 Jul 10;244(13):3477–3482. [PubMed] [Google Scholar]
- Bockaert J., Roy C., Jard S. Oxytocin-sensitive adenylate cyclase in frog bladder epithelial cells. Role of calcium, nucleotides, and other factors in hormonal stimulation. J Biol Chem. 1972 Nov 10;247(21):7073–7081. [PubMed] [Google Scholar]
- Braun T., Dods R. F. Development of a Mn-2+-sensitive, "soluble" adenylate cyclase in rat testis. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1097–1101. doi: 10.1073/pnas.72.3.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown B. L., Albano J. D., Ekins R. P., Sgherzi A. M. A simple and sensitive saturation assay method for the measurement of adenosine 3':5'-cyclic monophosphate. Biochem J. 1971 Feb;121(3):561–562. doi: 10.1042/bj1210561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butcher R. W., Baird C. E., Sutherland E. W. Effects of lipolytic and antilipolytic substances on adenosine 3',5'-monophosphate levels in isolated fat cells. J Biol Chem. 1968 Apr 25;243(8):1705–1712. [PubMed] [Google Scholar]
- Bär H. P., Hechter O. Adenyl cyclase and hormone action. 3. Calcium requirement for ACTH stimulation of adenyl cyclase. Biochem Biophys Res Commun. 1969 Jun 6;35(5):681–686. doi: 10.1016/0006-291x(69)90459-8. [DOI] [PubMed] [Google Scholar]
- Bär H. P., Hechter O. Adenyl cyclase and hormone action. I. Effects of adrenocorticotropic hormone, glucagon, and epinephrine on the plasma membrane of rat fat cells. Proc Natl Acad Sci U S A. 1969 Jun;63(2):350–356. doi: 10.1073/pnas.63.2.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng H., Farquhar M. G. Presence of adenylate cyclase activity in Golgi and other fractions from rat liver. II. Cytochemical localization within Golgi and ER membranes. J Cell Biol. 1976 Sep;70(3):671–684. doi: 10.1083/jcb.70.3.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVOREN P. R., SUTHERLAND E. W. THE CELLULAR LOCATION OF ADENYL CYCLASE IN THE PIGEON ERYTHROCYTE. J Biol Chem. 1963 Sep;238:3016–3023. [PubMed] [Google Scholar]
- Deery D. J. A calcium supported adenylyl cyclase activity in the pars distalis of the dogfish pituitary. Biochem Biophys Res Commun. 1974 Sep 9;60(1):326–333. doi: 10.1016/0006-291x(74)90208-3. [DOI] [PubMed] [Google Scholar]
- Ehrenreich J. H., Bergeron J. J., Siekevitz P., Palade G. E. Golgi fractions prepared from rat liver homogenates. I. Isolation procedure and morphological characterization. J Cell Biol. 1973 Oct;59(1):45–72. doi: 10.1083/jcb.59.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Entman M. L., Levey G. S., Epstein S. E. Demonstration of adenyl cyclase activity in canine cardiac sarcoplasmic reticulum. Biochem Biophys Res Commun. 1969 Jun 6;35(5):728–733. doi: 10.1016/0006-291x(69)90466-5. [DOI] [PubMed] [Google Scholar]
- Farquhar M. G., Bergeron J. J., Palade G. E. Cytochemistry of Golgi fractions prepared from rat liver. J Cell Biol. 1974 Jan;60(1):8–25. doi: 10.1083/jcb.60.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hynie S., Sharp G. W. Adenyl cyclase in the toad bladder. Biochim Biophys Acta. 1971 Jan 26;230(1):40–51. doi: 10.1016/0304-4165(71)90052-3. [DOI] [PubMed] [Google Scholar]
- Johnson R. A., Sutherland E. W. Detergent-dispersed adenylate cyclase from rat brain. Effects of fluoride, cations, and chelators. J Biol Chem. 1973 Jul 25;248(14):5114–5121. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lefkowitz R. J., Roth J., Pastan I. Effects of calcium on ACTH stimulation of the adrenal: separation of hormone binding from adenyl cyclase activation. Nature. 1970 Nov 28;228(5274):864–866. doi: 10.1038/228864a0. [DOI] [PubMed] [Google Scholar]
- Levey G. S. Solubilization of myocardial adenyl cyclase. Biochem Biophys Res Commun. 1970 Jan 6;38(1):86–92. doi: 10.1016/0006-291x(70)91087-9. [DOI] [PubMed] [Google Scholar]
- Liao S., Lin A. H., Tymoczko J. L. Adenyl cyclase of cell nuclei isolated from rat ventral prostate. Biochim Biophys Acta. 1971;230(3):535–538. doi: 10.1016/0304-4165(71)90185-1. [DOI] [PubMed] [Google Scholar]
- McKeel D. W., Jr, Jarett L. The enrichment of adenylate cyclase in the plasma membrane and golgi subcellular fractions of porcine adenohypophysis. J Cell Biol. 1974 Jul;62(1):231–236. doi: 10.1083/jcb.62.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perkins J. P. Adenyl cyclase. Adv Cyclic Nucleotide Res. 1973;3:1–64. [PubMed] [Google Scholar]
- Pohl S. L., Birnbaumer L., Rodbell M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. I. Properties. J Biol Chem. 1971 Mar 25;246(6):1849–1856. [PubMed] [Google Scholar]
- RABINOWITZ M., DESALLES L., MEISLER J., LORAND L. DISTRIBUTION OF ADENYL-CYCLASE ACTIVITY IN RABBIT SKELETAL-MUSCLE FRACTIONS. Biochim Biophys Acta. 1965 Jan 4;97:29–36. doi: 10.1016/0304-4165(65)90266-7. [DOI] [PubMed] [Google Scholar]
- Rodbell M., Birnbaumer L., Pohl S. L., Krans H. M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action. J Biol Chem. 1971 Mar 25;246(6):1877–1882. [PubMed] [Google Scholar]
- Rodbell M., Krans H. M., Pohl S. L., Birnbaumer L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. 3. Binding of glucagon: method of assay and specificity. J Biol Chem. 1971 Mar 25;246(6):1861–1871. [PubMed] [Google Scholar]
- Rodbell M., Krans H. M., Pohl S. L., Birnbaumer L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. IV. Effects of guanylnucleotides on binding of 125I-glucagon. J Biol Chem. 1971 Mar 25;246(6):1872–1876. [PubMed] [Google Scholar]
- Rodbell M., Krishna G. Preparation of isolated fat cells and fat cell "ghosts"; methods for assaying adenylate cyclase activity and levels of cyclic AMP. Methods Enzymol. 1974;31:103–114. doi: 10.1016/0076-6879(74)31010-5. [DOI] [PubMed] [Google Scholar]
- Rosen O. M., Rosen S. M. Properties of an adenyl cyclase partially purified from frog erythrocytes. Arch Biochem Biophys. 1969 May;131(2):449–456. doi: 10.1016/0003-9861(69)90417-2. [DOI] [PubMed] [Google Scholar]
- Ryan J., Storm D. R. Solubilization of glucagon and epinephrine sensitive adenylate cyclase from rat liver plasma membranes. Biochem Biophys Res Commun. 1974 Sep 9;60(1):304–311. doi: 10.1016/0006-291x(74)90205-8. [DOI] [PubMed] [Google Scholar]
- Seraydarian K., Mommaerts W. F. Density gradient separation of sarcotubular vesicles and other particulate constituents of rabbit muscle. J Cell Biol. 1965 Aug;26(2):641–656. doi: 10.1083/jcb.26.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Severson D. L., Drummond G. I., Sulakhe P. V. Adenylate cyclase in skeletal muscle. Kinetic properties and hormonal stimulation. J Biol Chem. 1972 May 10;247(9):2949–2958. [PubMed] [Google Scholar]
- Soifer D., Hechter O. Adenyl cyclase activity in rat liver nuclei. Biochim Biophys Acta. 1971;230(3):539–542. doi: 10.1016/0304-4165(71)90186-3. [DOI] [PubMed] [Google Scholar]
- Steer M. L., Atlas D., Levitzki A. Inter-relations between beta-adrenergic receptors, adenylate cyclase and calcium. N Engl J Med. 1975 Feb 20;292(8):409–414. doi: 10.1056/NEJM197502202920809. [DOI] [PubMed] [Google Scholar]
- Stein Y., Widnell C., Stein O. Acylation of lysophosphatides by plasma membrane fractions of rat liver. J Cell Biol. 1968 Oct;39(1):185–192. doi: 10.1083/jcb.39.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swislocki N. I., Tierney J. Activation of solubilized liver membrane adenylate cyclase by guanyl nucleotides. Arch Biochem Biophys. 1975 Jun;168(2):455–462. doi: 10.1016/0003-9861(75)90275-1. [DOI] [PubMed] [Google Scholar]
- Swislocki N. I., Tierney J. Solubilization, stabilization, and partial purification of brain adenylate cyclase from rat. Biochemistry. 1973 May 8;12(10):1862–1866. doi: 10.1021/bi00734a004. [DOI] [PubMed] [Google Scholar]
- Tao M., Lipmann F. Isolation of adenyl cyclase from Escherichia coli. Proc Natl Acad Sci U S A. 1969 May;63(1):86–92. doi: 10.1073/pnas.63.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomasi V., Réthy A., Trevisani A. Soluble and membrane-bound adenylate cyclase activity in Yoshida ascites hepatoma. Life Sci II. 1973 Feb 22;12(4):145–150. doi: 10.1016/0024-3205(73)90206-3. [DOI] [PubMed] [Google Scholar]
- Werner S., Löw H. Adenylate cyclase activity in rat adipocyte plasma membranes after adrenalectomy and administration of cortisone acetate. Effects of calcium ions and hormonal stimulations. Horm Metab Res. 1974 Sep;6(5):365–370. doi: 10.1055/s-0028-1093826. [DOI] [PubMed] [Google Scholar]
- Widnell C. C. Cytochemical localization of 5'-nucleotidase in subcellular fractions isolated from rat liver. I. The origin of 5'-nucleotidase activity in microsomes. J Cell Biol. 1972 Mar;52(3):542–558. doi: 10.1083/jcb.52.3.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Widnell C. C., Unkeless J. C. Partial purification of a lipoprotein with 5'-nucleotidase activity from membranes of rat liver cells. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1050–1057. doi: 10.1073/pnas.61.3.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolff J., Jones A. B. The purification of bovine thyroid plasma membranes and the properties of membrane-bound adenyl cyclase. J Biol Chem. 1971 Jun 25;246(12):3939–3947. [PubMed] [Google Scholar]
- van de Veerdonk F. C., Brouwer E. Role of calcium and prostaglandin (PGE 1 ) in the MSH-induced activation of adenylate cyclase in Xenopus laevis. Biochem Biophys Res Commun. 1973 May 1;52(1):130–136. doi: 10.1016/0006-291x(73)90964-9. [DOI] [PubMed] [Google Scholar]