Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Sep 1;70(3):692–706. doi: 10.1083/jcb.70.3.692

Exocytosis in secretory cells of rat lacrimal gland. Peroxidase release from lobules and isolated cells upon cholinergic stimulation

PMCID: PMC2109849  PMID: 956271

Abstract

Release of peroxidase from secretory cells of rat lacrimal gland upon cholinergic stimulation was studied in vitro with single lobules and isolated cells (lacrimocytes). Isolated lobules, kept in Eagle's medium, remain structurally intact and reaction product of peroxidase is confined to cisternae of rough endoplasmic reticulum, elements of the Golgi apparatus, and all secretory granules. Morphologically, exocytosis occurs by membrane fusion and discharge of granule content. The highest rate of peroxidase released from lobules is observed at 10(- 4) M carbamylcholine. The specific activity of peroxidase released into the medium is fourfold higher as compared to the lobules. Release of peroxidase is suppressed by atropine when added before or after the addition of carbamylcholine. At 4 degrees C, no peroxidase release occurs upon cholinergic stimulation. The exocytotic release of peroxidase is dependent on energy supply, as indicated by substantial inhibition (at 37 degrees C) under anoxic conditions or in the presence of dinitrophenol, KCN, or carboxyatractyloside. Furthermore, the process is sensitive to colchicine and vinblastine. Isolated lacrimocytes, consiting of 95% secretory acinar cells, are prepared by digestion with collagenase, hyaluronidase, and trypsin. They retain the characteristic polarity of secretory cells in situ, and localization of peroxidase is the same as in lobules. Since isolated lacrimocytes respond to cholinergic stimulation in the same way as lobules, the receptors are not damaged by the isolation procedure and appear to be associated directly with the exocrine cell. Oxygen uptake by isolated lacrimocytes is about 14 nmol O2 X min-1 X 10(-6) cells; it is about doubled by uncoupling with dinitrophenol. Oxygen uptake rises by 20-30% above the resting rate upon cholinergic stimulation. This additional uptake is suppressed by atropine or by added cholinesterase, indicating that continuous receptor occupancy may be required for the energy demand by exocytosis. On the basis of the specific activity of peroxidase in the medium, the energy demand resulting from cholinergic stimulation is estimated to be 0.08 mumol ATP (or energy-rich phosphate bonds) per microgram of protein released from the lacrimocytes.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amsterdam A., Jamieson J. D. Studies on dispersed pancreatic exocrine cells. I. Dissociation technique and morphologic characteristics of separated cells. J Cell Biol. 1974 Dec;63(3):1037–1056. doi: 10.1083/jcb.63.3.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barka T., Van der Noen H. Dissociation of rat parotid gland. Lab Invest. 1975 Mar;32(3):373–380. [PubMed] [Google Scholar]
  4. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borisy G. G., Taylor E. W. The mechanism of action of colchicine. Colchicine binding to sea urchin eggs and the mitotic apparatus. J Cell Biol. 1967 Aug;34(2):535–548. doi: 10.1083/jcb.34.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brazeau P., Vale W., Burgus R., Ling N., Butcher M., Rivier J., Guillemin R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science. 1973 Jan 5;179(4068):77–79. doi: 10.1126/science.179.4068.77. [DOI] [PubMed] [Google Scholar]
  7. Briggs R. T., Drath D. B., Karnovsky M. L., Karnovsky M. J. Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical method. J Cell Biol. 1975 Dec;67(3):566–586. doi: 10.1083/jcb.67.3.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Castle J. D., Jamieson J. D., Palade G. E. Radioautographic analysis of the secretory process in the parotid acinar cell of the rabbit. J Cell Biol. 1972 May;53(2):290–311. doi: 10.1083/jcb.53.2.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DAVIES R. E., HARPER A. A., MACKAY I. F. S. A comparison of the respiratory activity and histological changes in isolated pancreatic tissue. Am J Physiol. 1949 May;157(2):278–282. doi: 10.1152/ajplegacy.1949.157.2.278. [DOI] [PubMed] [Google Scholar]
  10. Deutsch W., Raper H. S. Respiration and functional activity. J Physiol. 1936 Aug 19;87(3):275–286. doi: 10.1113/jphysiol.1936.sp003405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  13. Herzog V., Fahimi H. D. A new sensitive colorimetric assay for peroxidase using 3,3'-diaminobenzidine as hydrogen donor. Anal Biochem. 1973 Oct;55(2):554–562. doi: 10.1016/0003-2697(73)90144-9. [DOI] [PubMed] [Google Scholar]
  14. Herzog V., Fahimi H. D. Intracellular distinction between peroxidase and catalase in exocrine cells of rat lacrimal gland: a biochemical and cytochemical study. Histochemistry. 1976 Mar 31;46(4):273–286. doi: 10.1007/BF02464417. [DOI] [PubMed] [Google Scholar]
  15. Herzog V., Miller F. Die Lokalisation endogener Peroxydase in der Glandula parotis der Ratte. Z Zellforsch Mikrosk Anat. 1970;107(3):403–420. [PubMed] [Google Scholar]
  16. Herzog V., Miller F. The localization of endogenous peroxidase in the lacrimal gland of the rat during postnatal development. Electron microscope cytochemical and biochemical studies. J Cell Biol. 1972 Jun;53(3):662–680. doi: 10.1083/jcb.53.3.662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hopkins C. R., Farquhar M. G. Hormone secretion by cells dissociated from rat anterior pituitaries. J Cell Biol. 1973 Nov;59(2 Pt 1):276–303. doi: 10.1083/jcb.59.2.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. IV. Metabolic requirements. J Cell Biol. 1968 Dec;39(3):589–603. doi: 10.1083/jcb.39.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Koerker D. J., Ruch W., Chideckel E., Palmer J., Goodner C. J., Ensinck J., Gale C. C. Somatostatin: hypothalamic inhibitor of the endocrine pancreas. Science. 1974 Apr 26;184(4135):482–484. doi: 10.1126/science.184.4135.482. [DOI] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maayan M. L., Ingbar S. H. Epinephrine: effect on uptake of iodine by dispersed cells of calf thyroid gland. Science. 1968 Oct 4;162(3849):124–125. doi: 10.1126/science.162.3849.124. [DOI] [PubMed] [Google Scholar]
  23. Morrison M., Allen P. Z. Lactoperoxidase: identification and isolation from Harderian and lacrimal glands. Science. 1966 Jun 17;152(3729):1626–1628. doi: 10.1126/science.152.3729.1626. [DOI] [PubMed] [Google Scholar]
  24. Murphy D. B., Tilney L. G. The role of microtubules in the movement of pigment granules in teleost melanophores. J Cell Biol. 1974 Jun;61(3):757–779. doi: 10.1083/jcb.61.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  26. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Redman C. M., Banerjee D., Howell K., Palade G. E. Colchicine inhibition of plasma protein release from rat hepatocytes. J Cell Biol. 1975 Jul;66(1):42–59. doi: 10.1083/jcb.66.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Romrell L. J., Coppe M. R., Munro D. R., Ito S. Isolation and separation of highly enriched fractions of viable mouse gastric parietal cells by velocity sedimentation. J Cell Biol. 1975 May;65(2):428–438. doi: 10.1083/jcb.65.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rothman S. S. Protein transport by the pancreas. Science. 1975 Nov 21;190(4216):747–753. doi: 10.1126/science.1105785. [DOI] [PubMed] [Google Scholar]
  30. Williams J. A., Wolff J. Possible role of microtubules in thyroid secretion. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1901–1908. doi: 10.1073/pnas.67.4.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wilson L., Meza I. The mechanism of action of colchicine. Colchicine binding properties of sea urchin sperm tail outer doublet tubulin. J Cell Biol. 1973 Sep;58(3):709–719. doi: 10.1083/jcb.58.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES