Abstract
Localization of antisera to neurofilament antigens derived from rat peripheral nerve was carried out in tissues of rat and human peripheral and central nervous systems by indirect immunofluorescence. Unfixed and chloroform-methanol-fixed frozen sections of tissues were incubated in purified IgG of the experimental rabbit antisera and subsequently exposed to goat anti-rabbit IgG conjugated with fluorescein isothiocyanate. Control studies were conducted on identical tissue preparations incubated in the same concentrations of nonspecific rabbit IgG or in experimental rabbit IgG absorbed with extracts of rat peripheral nerve containing neurofilament antigen. Extensive immunofluorescence was observed in rat and human peripheral and central nervous systems. The distribution and configuration of immunofluorescence corresponded to neurofilament-rich structural components of these tissues. Prominent immunofluorescence was also noted in neuronal cell bodies of spinal sensory ganglia, especially in perikarya of the large neuronal type. Immunofluorescence of the central nervous system was located predominantly in myelinated axons of the white matter in cerebrum, cerebellum, brain stem, and spinal cord. Less intense immunofluorescence was also seen in neuronal perikarya and in short thin linear processes of grey matter.
Full Text
The Full Text of this article is available as a PDF (2.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDRES K. H. [Research on the fine-structure of spinal ganglia]. Z Zellforsch Mikrosk Anat. 1961;55:1–48. [PubMed] [Google Scholar]
- Bertolini B., Monaco G., Rossi A. Ultrastructure of a regular arrangement of microtubules and neurofilaments. J Ultrastruct Res. 1970 Oct;33(1):173–186. doi: 10.1016/s0022-5320(70)90124-3. [DOI] [PubMed] [Google Scholar]
- Bignami A., Dahl D. Differentiation of astrocytes in the cerebellar cortex and the pyramidal tracts of the newborn rat. An immunofluorescence study with antibodies to a protein specific to astrocytes. Brain Res. 1973 Jan 30;49(2):393–402. doi: 10.1016/0006-8993(73)90430-7. [DOI] [PubMed] [Google Scholar]
- Blümcke S., Niedorf H. R. Electron microscope studies of schwann cells during the Wallerian degeneration with special reference to the cytoplasmic filaments. Acta Neuropathol. 1966 Jan 14;6(1):46–60. doi: 10.1007/BF00691081. [DOI] [PubMed] [Google Scholar]
- Bunge M. B., Bunge R. P., Peterson E. R., Murray M. R. A light and electron microscope study of long-term organized cultures of rat dorsal root ganglia. J Cell Biol. 1967 Feb;32(2):439–466. doi: 10.1083/jcb.32.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CLARK H. F., SHEPARD C. C. A DIALYSIS TECHNIQUE FOR PREPARING FLUORESCENT ANTIBODY. Virology. 1963 Aug;20:642–644. doi: 10.1016/0042-6822(63)90292-7. [DOI] [PubMed] [Google Scholar]
- Dahl D., Bignami A. Glial fibrillary acidic protein from normal and gliosed human brain. Demonstration of multiple related polypeptides. Biochim Biophys Acta. 1975 Mar 28;386(1):41–51. doi: 10.1016/0005-2795(75)90244-5. [DOI] [PubMed] [Google Scholar]
- Dahl D., Bignami A. Immunochemical and immunofluorescence studies of the glial fibrillary acidic protein in vertebrates. Brain Res. 1973 Oct 26;61:279–293. doi: 10.1016/0006-8993(73)90533-7. [DOI] [PubMed] [Google Scholar]
- Droz B., Koenig H. L., Biamberardino L. D., Di Giamberardino L. Axonal migration of protein and glycoprotein to nerve endings. I. Radioautographic analysis of the renewal of protein in nerve endings of chicken ciliary ganglion after intracerebral injection of (3H)lysine. Brain Res. 1973 Sep 28;60(1):93–127. doi: 10.1016/0006-8993(73)90852-4. [DOI] [PubMed] [Google Scholar]
- Friede R. L., Miyaghishi T., Hu K. H. Axon calibre, neurofilaments, microtubules, sheath thickness and cholesterol in cat optic nerve fibres. J Anat. 1971 Feb;108(Pt 2):365–373. [PMC free article] [PubMed] [Google Scholar]
- Hartman B. K. Immunofluorescence of dopamine- -hydroxylase. Application of improved methodology to the localization of the peripheral and central noradrenergic nervous system. J Histochem Cytochem. 1973 Apr;21(4):312–332. doi: 10.1177/21.4.312. [DOI] [PubMed] [Google Scholar]
- Hoffman P. N., Lasek R. J. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol. 1975 Aug;66(2):351–366. doi: 10.1083/jcb.66.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iqbal K., Wisniewski H. M., Grundke-Iqbal I., Korthals J. K., Terry R. D. Chemical pathology of neurofibrils. Neurofibrillary tangles of Alzheimer's presenile-senile dementia. J Histochem Cytochem. 1975 Jul;23(7):563–569. doi: 10.1177/23.7.1141687. [DOI] [PubMed] [Google Scholar]
- Jorgensen A. O., Subrahmanyan L., Turnbull C., Kalnins V. I. Localization of the neurofilament protein in neuroblastoma cells by immunofluorescent staining. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3192–3196. doi: 10.1073/pnas.73.9.3192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly P. T., Luttges M. W. Electrophoretic separation of nervous system proteins on exponential gradient polyacrylamide gels. J Neurochem. 1975 May;24(5):1077–1079. doi: 10.1111/j.1471-4159.1975.tb03680.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Metuzals J., Mushynski W. E. Electron microscope and experimental investigations of the neurofilamentous network in Deiters' neurons. Relationship with the cell surface and nuclear pores. J Cell Biol. 1974 Jun;61(3):701–722. doi: 10.1083/jcb.61.3.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Potter H. D. The distribution of neurofibrils coextensive with microtubules and neurofilaments in dendrites and axons of the tectum, cerebellum and pallium of the frog. J Comp Neurol. 1971 Dec;143(4):385–409. doi: 10.1002/cne.901430402. [DOI] [PubMed] [Google Scholar]
- Schochet S. S., Jr, Lampert P. W., Lindenberg R. Fine structure of the Pick and Hirano bodies in a case of Pick's disease. Acta Neuropathol. 1968 Nov 1;11(4):330–337. doi: 10.1007/BF00686729. [DOI] [PubMed] [Google Scholar]
- Shelanski M. L., Albert S., DeVries G. H., Norton W. T. Isolation of filaments from brain. Science. 1971 Dec 17;174(4015):1242–1245. doi: 10.1126/science.174.4015.1242. [DOI] [PubMed] [Google Scholar]
- Smith D. E. The location of neurofilaments and microtubules during the postnatal development of Clarke's nucleus in the kitten. Brain Res. 1973 May 30;55(1):41–53. doi: 10.1016/0006-8993(73)90487-3. [DOI] [PubMed] [Google Scholar]
- Smith R. S. Microtubule and neurofilament densities in amphibian spinal root nerve fibers: relationship to axoplasmic transport. Can J Physiol Pharmacol. 1973 Nov;51(11):798–806. doi: 10.1139/y73-123. [DOI] [PubMed] [Google Scholar]
- TERRY R. D. THE FINE STRUCTURE OF NEUROFIBRILLARY TANGLES IN ALZHEIMER'S DISEASE. J Neuropathol Exp Neurol. 1963 Oct;22:629–642. doi: 10.1097/00005072-196310000-00005. [DOI] [PubMed] [Google Scholar]
- Wiśniewski H., Terry R. D., Hirano A. Neurofibrillary pathology. J Neuropathol Exp Neurol. 1970 Apr;29(2):163–176. [PubMed] [Google Scholar]
- Wuerker R. B., Kirkpatrick J. B. Neuronal microtubules, neurofilaments, and microfilaments. Int Rev Cytol. 1972;33:45–75. doi: 10.1016/s0074-7696(08)61448-5. [DOI] [PubMed] [Google Scholar]
- Yen S. H., Dahl D., Schachner M., Shelanski M. L. Biochemistry of the filaments of brain. Proc Natl Acad Sci U S A. 1976 Feb;73(2):529–533. doi: 10.1073/pnas.73.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]