Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Jul 1;74(1):98–110. doi: 10.1083/jcb.74.1.98

Organization of cell junctions in the peritoneal mesothelium

M Simionescu, N Simionescu
PMCID: PMC2109863  PMID: 874004

Abstract

Intercellular junctions in the mesothelium of the visceral (mesentery and omentum), and parietal (diaphragm, pre-aortic, and iliac region) peritoneum were examined in rats and mice by using freeze-cleaved preparations. In addition to usual intercellular junctions (cell body junctions), special junctions are found between cell processes and the surface of the neighboring cell (cell process junctions). Cell body junctions are provided with tight junctions and communicating (gap) junctions. The former consist of one to two junctional strands which show a characteristic staggered arrangement, and focal discontinuities. In cell process junctions, the strands form loops or appear as short, free-ending elements; their polymorphism suggests considerable lability, probably in connection with their assembly and disassembly. The existence of free-ending strands indicates that such structures can be used as attachment devices without being concomitantly involved in the formation of occluding zonules. In both types of junctions, the strands can be resolved into bars, approximately 80- 100nm long, frequently provided with terminal enlargements and intercalated particles which occur singly or in small clusters. These particles are morphologically similar to those present in communicating (gap) junctions. The mesothelium is also provided with isolate composite macular junctions. Throughout the mesothelium, the cleavage plane follows the outer contour of junctional strands and particles, suggesting that strand-to-strand interactions in the apposed membranes are weaker than interactions between each strand and underlying cytoplasmic structures. In their general geometry and cleavage characteristics, the mesothelial junctions resemble the junctions found in the venular endothelium.

Full Text

The Full Text of this article is available as a PDF (5.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akert K., Sandri C., Weibel E. R., Peper K., Moor H. The fine structure of the perineural endothelium. Cell Tissue Res. 1976 Jan 27;165(3):281–295. doi: 10.1007/BF00222433. [DOI] [PubMed] [Google Scholar]
  2. Albertini D. F., Fawcett D. W., Olds P. J. Morphological variations in gap junctions of ovarian granulosa cells. Tissue Cell. 1975;7(2):389–405. doi: 10.1016/0040-8166(75)90014-2. [DOI] [PubMed] [Google Scholar]
  3. BARADI A. F., HOPE J. OBSERVATIONS ON ULTRASTRUCTURE OF RABBIT MESOTHELIUM. Exp Cell Res. 1964 Mar;34:33–44. doi: 10.1016/0014-4827(64)90180-6. [DOI] [PubMed] [Google Scholar]
  4. BERNDT W. O., GOSSELIN R. E. Differential changes in permeability of mesentery to rubidium and phosphate. Am J Physiol. 1962 Apr;202:761–767. doi: 10.1152/ajplegacy.1962.202.4.761. [DOI] [PubMed] [Google Scholar]
  5. Brachet E., Rasio E. The passage of [125I]insulin across isolated mesentery. Effect of anti-insulin serum. Biochim Biophys Acta. 1969 Jun 3;183(1):162–168. doi: 10.1016/0005-2736(69)90140-0. [DOI] [PubMed] [Google Scholar]
  6. CASCARANO J., RUBIN A. D., CHICK W. L., ZWEIFACH B. W. METABOLICALLY INDUCED PERMEABILITY CHANGES ACROSS MESOTHELIUM AND ENDOTHELIUM. Am J Physiol. 1964 Feb;206:373–382. doi: 10.1152/ajplegacy.1964.206.2.373. [DOI] [PubMed] [Google Scholar]
  7. Casley-Smith J. R. An electron microscopical study of the passage of ions through the endothelium of lymphatic and blood capillaries, and through the mesothelium. Q J Exp Physiol Cogn Med Sci. 1967 Apr;52(2):105–113. doi: 10.1113/expphysiol.1967.sp001892. [DOI] [PubMed] [Google Scholar]
  8. Claude P., Goodenough D. A. Fracture faces of zonulae occludentes from "tight" and "leaky" epithelia. J Cell Biol. 1973 Aug;58(2):390–400. doi: 10.1083/jcb.58.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cotran R. S., Karnovsky M. J. Ultrastructural studies on the permeability of the mesothelium to horseradish peroxidase. J Cell Biol. 1968 Apr;37(1):123–137. doi: 10.1083/jcb.37.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cotran R. S., Majno G. Studies on the intercellular junctions of mesothelium and endothelium. Protoplasma. 1967;63(1):45–51. [PubMed] [Google Scholar]
  11. Decker R. S., Friend D. S. Assembly of gap junctions during amphibian neurulation. J Cell Biol. 1974 Jul;62(1):32–47. doi: 10.1083/jcb.62.1.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. FUKATA H. ELECTRON MICROSCOPIC STUDY ON NORMAL RAT PERITONEAL MESOTHELIUM AND ITS CHANGES IN ABSORPTION OF PARTICULATE IRON DEXTRAN COMPLEX. Acta Pathol Jpn. 1963 Oct;13:309–325. doi: 10.1111/j.1440-1827.1963.tb03161.x. [DOI] [PubMed] [Google Scholar]
  13. Fedorko M. E., Hirsch J. G., Fried B. Studies on transport of macromolecules and small particles across mesothelial cells of the mouse omentum. II. Kinetic features and metabolic requirements. Exp Cell Res. 1971 Dec;69(2):313–323. doi: 10.1016/0014-4827(71)90230-8. [DOI] [PubMed] [Google Scholar]
  14. Fedorko M. E., Hirsch J. G. Studies on transport of macromolecules and small particles across mesothelial cells of the mouse omentum. I. Morphologic aspects. Exp Cell Res. 1971 Nov;69(1):113–127. doi: 10.1016/0014-4827(71)90317-x. [DOI] [PubMed] [Google Scholar]
  15. Gilula N. B., Fawcett D. W., Aoki A. The Sertoli cell occluding junctions and gap junctions in mature and developing mammalian testis. Dev Biol. 1976 May;50(1):142–168. doi: 10.1016/0012-1606(76)90074-9. [DOI] [PubMed] [Google Scholar]
  16. HAMA K. The fine structure of the desmosomes in frog mesothelium. J Biophys Biochem Cytol. 1960 Jun;7:575–578. doi: 10.1083/jcb.7.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Henderson L. W. The problem of peritoneal membrane area and permeability. Kidney Int. 1973 Jun;3(6):409–410. doi: 10.1038/ki.1973.63. [DOI] [PubMed] [Google Scholar]
  18. MAJNO G., PALADE G. E., SCHOEFL G. I. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol. 1961 Dec;11:607–626. doi: 10.1083/jcb.11.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MAJNO G., PALADE G. E. Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol. 1961 Dec;11:571–605. doi: 10.1083/jcb.11.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Montesano R., Friend D. S., Perrelet A., Orci L. In vivo assembly of tight junctions in fetal rat liver. J Cell Biol. 1975 Nov;67(2PT1):310–319. doi: 10.1083/jcb.67.2.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. ODOR D. L. Observations of the rat mesothelium with the electron and phase microscopes. Am J Anat. 1954 Nov;95(3):433–465. doi: 10.1002/aja.1000950304. [DOI] [PubMed] [Google Scholar]
  22. ODOR D. L. Uptake and transfer of particulate matter from the peritoneal cavity of the rat. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):105–108. doi: 10.1083/jcb.2.4.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reale E., Luciano L., Franke K., Pannese E., Wermbter G., Iurato S. Intercellular junctions in the vascular stria and spiral ligament. J Ultrastruct Res. 1975 Dec;53(3):284–297. doi: 10.1016/s0022-5320(75)80030-x. [DOI] [PubMed] [Google Scholar]
  24. Revel J. P., Yip P., Chang L. L. Cell junctions in the early chick embryo--a freeze etch study. Dev Biol. 1973 Dec;35(2):302–317. doi: 10.1016/0012-1606(73)90026-2. [DOI] [PubMed] [Google Scholar]
  25. Shear L., Harvey J. D., Barry K. G. Peritoneal sodium transport: enhancement by pharmacologic and physical agents. J Lab Clin Med. 1966 Feb;67(2):181–188. [PubMed] [Google Scholar]
  26. Simionescu N., Simionescu M. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J Cell Biol. 1976 Sep;70(3):608–621. doi: 10.1083/jcb.70.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Staehelin L. A. Structure and function of intercellular junctions. Int Rev Cytol. 1974;39:191–283. doi: 10.1016/s0074-7696(08)60940-7. [DOI] [PubMed] [Google Scholar]
  28. Thiele J., Reale E. Freeze-fracture study of the junctional complexes of human and rabbit thyroid follicles. Cell Tissue Res. 1976 May 6;168(2):133–140. doi: 10.1007/BF00215872. [DOI] [PubMed] [Google Scholar]
  29. Wade J. B., Karnovsky M. J. Fracture faces of osmotically disrupted zonulae occludentes. J Cell Biol. 1974 Aug;62(2):344–350. doi: 10.1083/jcb.62.2.344. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES