Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Jul 1;74(1):251–263. doi: 10.1083/jcb.74.1.251

The effect of myosin antibody on the division of starfish blastomeres

I Mabuchi, M Okuno
PMCID: PMC2109865  PMID: 141455

Abstract

Antiserum against starfish egg myosin was produced in rabbits. Antibody specificity to myosin was demonstrated by Ouchterlony's immunodiffusion test and by immunoelectrophoresis in the presence of sodium dodecylsulfate (SDS). The latter technique showed that the antibody binds to both heavy and light chains of egg myosin. Furthermore, the antibody reacted with starfish sperm mysosin and starfish adult muscle myosin at both the heavy and light chains. It did not react with bovine platelet mysosin or rabbit skeletal muscle myosin in Ouchterlony's test; however, a weak reaction was observed in the presence of SDS between the antibody and these myosin heavy chains. Ca- and Mg-ATPase activities of egg myosin were not affected by the antibody, but it did inhibit actin-activated ATPase activity of egg myosin. Microinjection of the antibody into blastomeres of starfish eggs at the two-cell stage was carried out. Anti-egg myosin γ-globulin inhibited the subsequent cleavages at an amount of more than 0.3 ng when injected at interphase. The inhibition was reduced when the injection was carried out near the initiation of cleavage. At the onset of the second cleavage the antibody was not inhibitory; however, an appropriate amount inhibited the third cleavage. Although the disappearance of the nuclear membrane was observed in the presence of the antibody, the formation of the mitotic apparatus was more or less disturbed. However the formation of daughter nuclei seemed to be scarcely affected by the antibody except that the distance between the nuclei was significantly smaller than normal.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold J. M. Cleavage furrow formation in a telolecithal egg (Loligo pealii). I. Filaments in early furrow formation. J Cell Biol. 1969 Jun;41(3):894–904. doi: 10.1083/jcb.41.3.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnold J. M. Cleavage furrow formation in a telolecithal egg (Loligo pealii). II. Direct evidence for a contraction of the cleavage furrow base. J Exp Zool. 1971 Jan;176(1):73–85. doi: 10.1002/jez.1401760108. [DOI] [PubMed] [Google Scholar]
  3. Bluemink J. G. The first cleavage of the amphibian egg. An electron microscope study of the onset of cytokinesis in the egg of Ambystoma mexicanum. J Ultrastruct Res. 1970 Jul;32(1):142–166. doi: 10.1016/s0022-5320(70)80042-9. [DOI] [PubMed] [Google Scholar]
  4. Forer A., Behnke O. An actin-like component in spermatocytes of a crane fly (Nephrotoma suturalis Loew). I. The spindle. Chromosoma. 1972;39(2):145–173. doi: 10.1007/BF00319840. [DOI] [PubMed] [Google Scholar]
  5. Forer A., Behnke O. An actin-like component in spermatocytes of a crane fly (Nephrotoma suturalis Loew). II. The cell cortex. Chromosoma. 1972;39(2):175–190. doi: 10.1007/BF00319841. [DOI] [PubMed] [Google Scholar]
  6. Fujiwara K., Pollard T. D. Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J Cell Biol. 1976 Dec;71(3):848–875. doi: 10.1083/jcb.71.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gawadi N. Actin in the mitotic spindle. Nature. 1971 Dec 17;234(5329):410–410. doi: 10.1038/234410a0. [DOI] [PubMed] [Google Scholar]
  8. HIRAMOTO Y. FURTHER STUDIES ON CELL DIVISION WITHOUT MITOTIC APPARATUS IN SEA URCHIN EGGS. J Cell Biol. 1965 Apr;25:SUPPL–SUPPL:167. doi: 10.1083/jcb.25.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hinkley R., Telser A. Heavy meromyosin-binding filaments in the mitotic apparatus of mammaliam cells. Exp Cell Res. 1974 May;86(1):161–164. doi: 10.1016/0014-4827(74)90662-4. [DOI] [PubMed] [Google Scholar]
  10. Hiramoto Y. A method of microinjection. Exp Cell Res. 1974 Aug;87(2):403–406. doi: 10.1016/0014-4827(74)90503-5. [DOI] [PubMed] [Google Scholar]
  11. Hiramoto Y. Analysis of cleavage stimulus by means of micromanipulation of sea urchin eggs. Exp Cell Res. 1971 Oct;68(2):291–298. doi: 10.1016/0014-4827(71)90153-4. [DOI] [PubMed] [Google Scholar]
  12. Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lowey S., Risby D. Light chains from fast and slow muscle myosins. Nature. 1971 Nov 12;234(5324):81–85. doi: 10.1038/234081a0. [DOI] [PubMed] [Google Scholar]
  15. MOMMAERTS W. F. H. M. Reversible polymerization and ultracentrifugal purification of actin. J Biol Chem. 1951 Feb;188(2):559–565. [PubMed] [Google Scholar]
  16. Mabuchi I. A myosin-like protein in the cortical layer of cleaving starfish eggs. J Biochem. 1974 Jul;76(1):47–55. doi: 10.1093/oxfordjournals.jbchem.a130558. [DOI] [PubMed] [Google Scholar]
  17. Mabuchi I. A myosin-like protein in the cortical layer of the sea urchin egg. J Cell Biol. 1973 Nov;59(2 Pt 1):542–547. doi: 10.1083/jcb.59.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mabuchi I. Isolation of myosin from starfish sperm heads. J Biochem. 1976 Aug;80(2):413–415. doi: 10.1093/oxfordjournals.jbchem.a131293. [DOI] [PubMed] [Google Scholar]
  19. Masaki T. Immunochemical comparison of myosins from chicken cardiac, fast white, slow red, and smooth muscle. J Biochem. 1974 Aug;76(2):441–449. doi: 10.1093/oxfordjournals.jbchem.a130586. [DOI] [PubMed] [Google Scholar]
  20. Obinata T., Hasegawa T., Masaki T., Hayashi T. The subunit structure of myosin from skeletal muscle of the early chick embryo. J Biochem. 1976 Mar;79(3):521–531. doi: 10.1093/oxfordjournals.jbchem.a131096. [DOI] [PubMed] [Google Scholar]
  21. Perry M. M., John H. A., Thomas N. S. Actin-like filaments in the cleavage furrow of newt egg. Exp Cell Res. 1971 Mar;65(1):249–253. doi: 10.1016/s0014-4827(71)80075-7. [DOI] [PubMed] [Google Scholar]
  22. Pollard T. D., Thomas S. M., Niederman R. Human platelet myosin. I. Purification by a rapid method applicable to other nonmuscle cells. Anal Biochem. 1974 Jul;60(1):258–266. doi: 10.1016/0003-2697(74)90152-3. [DOI] [PubMed] [Google Scholar]
  23. Rappaport R. Cell division: direct measurement of maximum tension exerted by furrow of echinoderm eggs. Science. 1967 Jun 2;156(3779):1241–1243. doi: 10.1126/science.156.3779.1241. [DOI] [PubMed] [Google Scholar]
  24. Rappaport R. Cytokinesis in animal cells. Int Rev Cytol. 1971;31:169–213. doi: 10.1016/s0074-7696(08)60059-5. [DOI] [PubMed] [Google Scholar]
  25. Rappaport R. Reversal of chemical cleavage inhibition in echinoderm eggs. J Exp Zool. 1971 Feb;176(2):249–255. doi: 10.1002/jez.1401760210. [DOI] [PubMed] [Google Scholar]
  26. Sanger J. W. Changing patterns of actin localization during cell division. Proc Natl Acad Sci U S A. 1975 May;72(5):1913–1916. doi: 10.1073/pnas.72.5.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sanger J. W. Presence of actin during chromosomal movement. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2451–2455. doi: 10.1073/pnas.72.6.2451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sarkar S., Sreter F. A., Gergely J. Light chains of myosins from white, red, and cardiac muscles. Proc Natl Acad Sci U S A. 1971 May;68(5):946–950. doi: 10.1073/pnas.68.5.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schroeder T. E. Actin in dividing cells: contractile ring filaments bind heavy meromyosin. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1688–1692. doi: 10.1073/pnas.70.6.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schroeder T. E. Cytokinesis: filaments in the cleavage furrow. Exp Cell Res. 1968 Oct;53(1):272–276. doi: 10.1016/0014-4827(68)90373-x. [DOI] [PubMed] [Google Scholar]
  31. Schroeder T. E. The contractile ring. I. Fine structure of dividing mammalian (HeLa) cells and the effects of cytochalasin B. Z Zellforsch Mikrosk Anat. 1970;109(4):431–449. [PubMed] [Google Scholar]
  32. Schroeder T. E. The contractile ring. II. Determining its brief existence, volumetric changes, and vital role in cleaving Arbacia eggs. J Cell Biol. 1972 May;53(2):419–434. doi: 10.1083/jcb.53.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Scott D. G., Daniel C. W. Filaments in the division furrow of mouse mammary cells. J Cell Biol. 1970 May;45(2):461–466. doi: 10.1083/jcb.45.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Selman G. G., Perry M. M. Ultrastructural changes in the surface layers of the newt's egg in relation to the mechanism of its cleavage. J Cell Sci. 1970 Jan;6(1):207–227. doi: 10.1242/jcs.6.1.207. [DOI] [PubMed] [Google Scholar]
  35. Szollosi D. Cortical cytoplasmic filaments of cleaving eggs: a structural element corresponding to the contractile ring. J Cell Biol. 1970 Jan;44(1):192–209. doi: 10.1083/jcb.44.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tucker J. B. Microtubules and a contractile ring of microfilaments associated with a cleavage furrow. J Cell Sci. 1971 Mar;8(2):557–571. doi: 10.1242/jcs.8.2.557. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES