Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Jul 1;74(1):181–203. doi: 10.1083/jcb.74.1.181

The structure of postsynaptic densities isolated from dog cerebral cortex: I. overall morphology and protein composition

RS Cohen, F Blomberg, K Berzins, P Siekevitz
PMCID: PMC2109867  PMID: 194906

Abstract

A postsynaptic density (PSD) fraction, including some adherent subsynaptic web material, has been isolated from dog cerebral cortex by a short-procedure modification of methods of Davis and Bloom (21, 22) and Cotman and Taylor (20), using Triton X-100. The fraction has been visualized by thin-section, replica, and negative (phosphotungstic acid) staining electron microscopy and its proteins separated by high-resoltuion SDS gel electrophoresis. Morphologically, the preparation seems to be quite pure, with very little membrane contamination. The density is composed of protein, no nuclei acids, and very little phospholipids being detectable. The fraction had no ATPase or GTPase activity, but it did have a very small amount of cytochrome c oxidase activity (of a specific activity less than 0.5 percent that of a mitochondrial fraction) and a small amount of 5'- nucleotidase activity (of a specific activity between 6 and 7 percent that of a synaptic membrane fraction). Electron micrographs reveal cup-shaped structures approximately 400nm long and approximately 40nm wide, made up of apparent particles 13-28nm in diameter. However, en face views, and particularly micrographs of replicas and PTA-stained preparations, reveal a disk-shaped structure, outside diameter approximately 400 nm, in which filaments are seen to extend from the central part of the density. High resolution gel electrophoresis studies indicated some 15 major proteins and perhaps 10 or more minor ones; the predominant protein had a mol wt of 51,000, followed by ones at 45,000, 40,000, 31,000, 26,000, and several at 100,000. A comparison by gel electrophoresis of density fraction proteins with those of a lysed synaptosomal membrane fraction containing some adherent densities indicated some comigrating proteins, but the major membrane fraction protein, mol wt 52,000, was not found in the density fraction. Antibodies raised against the density fraction reacted with a preparation of solubilized synaptic membrane proteins. By both these criteria, it was considered that the density and the synaptic membrane have some proteins in common. By separately mixing (125)I-labeled myelin, synaptic vesicle, and mitochondrial fraction proteins with synaptosomes, and then isolating the density fraction from the mixture, it was concluded that a major 26,000 mol wt density fraction protein was common to both mitochondria and density, that none of the proteins of the density were contaminants from the mitochondrial fraction, that a minor approximately 150,000 band was a contaminant from the synaptic vesicle fraction, and that the moderately staining PSD fraction protein of 17,000 mol wt band was the result of contamination by the major basic protein of myelin. On the basis of the marker enzymatic assays and the mixing experiments, it is considered that the density fraction is moderately pure biochemically, and that its protein composition, aside from a few exceptions noted above, reflects its in situ character.

Full Text

The Full Text of this article is available as a PDF (6.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akert K., Moor H., Pfenninger K., Sandri C. Contributions of new impregnation methods and freeze etching to the problems of synaptic fine structure. Prog Brain Res. 1969;31:223–240. doi: 10.1016/S0079-6123(08)63241-0. [DOI] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Babitch J. A., Breithaupt T. B., Chiu T. C., Garadi R., Helseth D. L. Preparation of chick brain synaptosomes and synaptosomal membranes. Biochim Biophys Acta. 1976 Apr 16;433(1):75–89. doi: 10.1016/0005-2736(76)90179-6. [DOI] [PubMed] [Google Scholar]
  4. Banker G., Churchill L., Cotman C. W. Proteins of the postsynaptic density. J Cell Biol. 1974 Nov;63(2 Pt 1):456–465. doi: 10.1083/jcb.63.2.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Banker G., Crain B., Cotman C. W. Molecular weights of the polypeptide chains of synaptic plasma membranes. Brain Res. 1972 Jul 20;42(2):508–513. doi: 10.1016/0006-8993(72)90551-3. [DOI] [PubMed] [Google Scholar]
  6. Blitz A. L., Fine R. E. Muscle-like contractile proteins and tubulin in synaptosomes. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4472–4476. doi: 10.1073/pnas.71.11.4472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blomberg F., Cohen R. S., Siekevitz P. The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure. J Cell Biol. 1977 Jul;74(1):204–225. doi: 10.1083/jcb.74.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bosmann H. B., Case K. R., Shea M. B. Proteins and glycoproteins of rat cerebral cortex subsynaptosomal fractions: Extraction with sodium dodecylsulphate and analytic electrophoresis. FEBS Lett. 1970 Dec 11;11(4):261–264. doi: 10.1016/0014-5793(70)80543-9. [DOI] [PubMed] [Google Scholar]
  9. Breckenridge W. C., Morgan I. G. Common glycoproteins of synaptic vesicles and the synaptosomal plasma membrane. FEBS Lett. 1972 May 15;22(3):253–256. doi: 10.1016/0014-5793(72)80243-6. [DOI] [PubMed] [Google Scholar]
  10. COOPERSTEIN S. J., LAZAROW A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem. 1951 Apr;189(2):665–670. [PubMed] [Google Scholar]
  11. Cotman C. W., Banker G., Churchill L., Taylor D. Isolation of postsynaptic densities from rat brain. J Cell Biol. 1974 Nov;63(2 Pt 1):441–455. doi: 10.1083/jcb.63.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cotman C. W., Banker G., Levy W., Taylor D. An ultrastructural and chemical analysis of the effect of triton X-100 on synaptic plasma membranes. Biochim Biophys Acta. 1971 Dec 3;249(2):406–418. doi: 10.1016/0005-2736(71)90119-2. [DOI] [PubMed] [Google Scholar]
  13. Cotman C. W., Mahler H. R., Hugli T. E. Isolation and characterization of insoluble proteins of the synaptic plasma membrane. Arch Biochem Biophys. 1968 Sep 10;126(3):821–837. doi: 10.1016/0003-9861(68)90476-1. [DOI] [PubMed] [Google Scholar]
  14. Cotman C. W., Mahler H. R. Resolution of insoluble proteins in rat brain subcellular fractions. Arch Biochem Biophys. 1967 May;120(2):384–396. doi: 10.1016/0003-9861(67)90255-x. [DOI] [PubMed] [Google Scholar]
  15. Cotman C. W., Matthews D. A. Synaptic plasma membranes from rat brain synaptosomes: isolation and partial characterization. Biochim Biophys Acta. 1971 Dec 3;249(2):380–394. doi: 10.1016/0005-2736(71)90117-9. [DOI] [PubMed] [Google Scholar]
  16. Cotman C. W., Taylor D. Isolation and structural studies on synaptic complexes from rat brain. J Cell Biol. 1972 Dec;55(3):696–711. doi: 10.1083/jcb.55.3.696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Davis G. A., Bloom F. E. Isolation of synaptic junctional complexes from rat brain. Brain Res. 1973 Nov 9;62(1):135–153. doi: 10.1016/0006-8993(73)90624-0. [DOI] [PubMed] [Google Scholar]
  18. De Robertis E. Ultrastructure and cytochemistry of the synaptic region. The macromolecular components involved in nerve transmission are being studied. Science. 1967 May 19;156(3777):907–914. doi: 10.1126/science.156.3777.907. [DOI] [PubMed] [Google Scholar]
  19. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  20. Fiszer S., Robertis E. D. Action of triton X-100 on ultrastructure and membrane-bound- enzymes of isolated nerve endings from rat brain. Brain Res. 1967 May;5(1):31–44. doi: 10.1016/0006-8993(67)90217-x. [DOI] [PubMed] [Google Scholar]
  21. GRAY E. G. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat. 1959 Oct;93:420–433. [PMC free article] [PubMed] [Google Scholar]
  22. Gray E. G. Synaptic fine structure and nuclear, cytoplasmic and extracellular networks: The stereoframework concept. J Neurocytol. 1975 Jun;4(3):315–339. doi: 10.1007/BF01102116. [DOI] [PubMed] [Google Scholar]
  23. Gurd J. W., Jones L. R., Mahler H. R., Moore W. J. Isolation and partial characterization of rat brain synaptic plasma membranes. J Neurochem. 1974 Feb;22(2):281–290. doi: 10.1111/j.1471-4159.1974.tb11591.x. [DOI] [PubMed] [Google Scholar]
  24. Gurd J. W. Synaptic plasma membrane glycoproteins: molecular identification of lectin receptors. Biochemistry. 1977 Feb 8;16(3):369–374. doi: 10.1021/bi00622a005. [DOI] [PubMed] [Google Scholar]
  25. HUTCHISON W. C., DOWNIE E. D., MUNRO H. N. Factors affecting the Schneider procedure for estimation of nucleic acids. Biochim Biophys Acta. 1962 May 14;55:561–570. doi: 10.1016/0006-3002(62)90835-1. [DOI] [PubMed] [Google Scholar]
  26. Hemminki K. Characterization of proteins and glycoproteins of surface membranes isolated from immature brain cells. Life Sci II. 1972 Dec 22;11(24):1173–1179. doi: 10.1016/0024-3205(72)90184-1. [DOI] [PubMed] [Google Scholar]
  27. Hemminki K. Composition and synthesis of plasma membranes and smooth endoplasmic reticulum in isolated cells of newborn rat brain. Biochim Biophys Acta. 1973 Apr 16;298(4):810–816. doi: 10.1016/0005-2736(73)90385-4. [DOI] [PubMed] [Google Scholar]
  28. Hemminki K. Purification of plasma membranes from immature brain. FEBS Lett. 1973 Dec 15;38(1):79–82. doi: 10.1016/0014-5793(73)80518-6. [DOI] [PubMed] [Google Scholar]
  29. Hemminki K. Purification of surface membranes from immature brain cells. Exp Cell Res. 1973 Nov;82(1):31–38. doi: 10.1016/0014-4827(73)90241-3. [DOI] [PubMed] [Google Scholar]
  30. Hemminki K., Suovaniemi O. Preparation of plasma membranes from isolated cells of newborn rat brain. Biochim Biophys Acta. 1973 Feb 27;298(1):75–83. doi: 10.1016/0005-2736(73)90011-4. [DOI] [PubMed] [Google Scholar]
  31. Henn F. A., Hansson H. A., Hamberger A. Preparation of plasma membrane from isolated neurons. J Cell Biol. 1972 Jun;53(3):654–661. doi: 10.1083/jcb.53.3.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Jones D. G., Brearley R. F. Further studies on synaptic junctions. II. A comparison of synaptic ultrastructure in fractionated and intact cerebral cortex. Z Zellforsch Mikrosk Anat. 1972;125(4):432–447. [PubMed] [Google Scholar]
  33. Jones D. H., Matus A. I. Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta. 1974 Aug 9;356(3):276–287. doi: 10.1016/0005-2736(74)90268-5. [DOI] [PubMed] [Google Scholar]
  34. Karlsson J. O., Hamberger A., Henn F. A. Polypeptide composition of membranes derived from neuronal and glial cells. Biochim Biophys Acta. 1973 Mar 16;298(2):219–229. doi: 10.1016/0005-2736(73)90352-0. [DOI] [PubMed] [Google Scholar]
  35. Kornguth S. E., Flangas A. L., Siegel F. L., Geison R. L., O'Brien J. F., Lamar C., Jr, Scott G. Chemical and metabolic characteristics of synaptic complexes from brain isolated by zonal centrifugation in a cesium chloride gradient. J Biol Chem. 1971 Feb 25;246(4):1177–1184. [PubMed] [Google Scholar]
  36. Kornguth S. E., Sunderland E. Isolation and partial characterization of a tubulin-like protein from human and swine synaptosomal membranes. Biochim Biophys Acta. 1975 May 30;393(1):100–114. doi: 10.1016/0005-2795(75)90220-2. [DOI] [PubMed] [Google Scholar]
  37. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  38. Levitan I. B., Mushynski W. E., Ramirez G. Highly purified synaptosomal membranes from rat brain. Preparation and characterization. J Biol Chem. 1972 Sep 10;247(17):5376–5381. [PubMed] [Google Scholar]
  39. Margolis R. K., Margolis R. U., Preti C., Lai D. Distribution and metabolism of glycoproteins and glycosaminoglycans in subcellular fractions of brain. Biochemistry. 1975 Nov 4;14(22):4797–4804. doi: 10.1021/bi00693a004. [DOI] [PubMed] [Google Scholar]
  40. Matus A. I., Walters B. B., Jones D. H. Junctional ultrastructure in isolated synaptic membranes. J Neurocytol. 1975 Jun;4(3):357–367. doi: 10.1007/BF01102118. [DOI] [PubMed] [Google Scholar]
  41. Matus A. I., Walters B. B. Ultrastructure of the synaptic junctional lattice isolated from mammalian brain. J Neurocytol. 1975 Jun;4(3):369–375. doi: 10.1007/BF01102119. [DOI] [PubMed] [Google Scholar]
  42. PALAY S. L. Synapses in the central nervous system. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):193–202. doi: 10.1083/jcb.2.4.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. PALAY S. L. The morphology of synapses in the central nervous system. Exp Cell Res. 1958;14(Suppl 5):275–293. [PubMed] [Google Scholar]
  44. POTTER V. R., LYLE G. G., SCHNEIDER W. C. Oxidative phosphorylation in whole homogenates and in cell particles. J Biol Chem. 1951 May;190(1):293–301. [PubMed] [Google Scholar]
  45. Peters A., Kaiserman-Abramof I. R. The small pyramidal neuron of the rat cerebral cortex. The synapses upon dendritic spines. Z Zellforsch Mikrosk Anat. 1969 Sep 22;100(4):487–506. doi: 10.1007/BF00344370. [DOI] [PubMed] [Google Scholar]
  46. SOYENKOFF B. C. An improved micromethod of phosphate determination. J Biol Chem. 1952 Sep;198(1):221–227. [PubMed] [Google Scholar]
  47. Therien H. M., Mushynski W. E. Isolation of synaptic junctional complexes of high structural integrity from rat brain. J Cell Biol. 1976 Dec;71(3):807–822. doi: 10.1083/jcb.71.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Van Leeuwen C., Stam H., Oestreicher A. B. Isolation and partial characterization of chick brain synaptic plasma membranes. Biochim Biophys Acta. 1976 Jun 4;436(1):53–67. doi: 10.1016/0005-2736(76)90219-4. [DOI] [PubMed] [Google Scholar]
  49. Walters B. B., Matus A. I. Tubulin in postynaptic junctional lattice. Nature. 1975 Oct 9;257(5526):496–498. doi: 10.1038/257496a0. [DOI] [PubMed] [Google Scholar]
  50. Wannamaker B. B., Kornguth S. E. Electrophoretic patterns of proteins from isolated synapses of human and swine brain. Biochim Biophys Acta. 1973 Apr 20;303(2):333–337. doi: 10.1016/0005-2795(73)90364-4. [DOI] [PubMed] [Google Scholar]
  51. Whittaker V. P. The application of subcellular fractionation techniques to the study of brain function. Prog Biophys Mol Biol. 1965;15:39–96. doi: 10.1016/0079-6107(65)90004-0. [DOI] [PubMed] [Google Scholar]
  52. Widnell C. C., Unkeless J. C. Partial purification of a lipoprotein with 5'-nucleotidase activity from membranes of rat liver cells. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1050–1057. doi: 10.1073/pnas.61.3.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Wolfe L. S., Morgan I. G., Gombos G. Isolation of plasma membranes from rat brain. Biochim Biophys Acta. 1971 Sep 14;241(3):737–751. doi: 10.1016/0005-2736(71)90002-2. [DOI] [PubMed] [Google Scholar]
  54. Zanetta J. P., Morgan I. G., Gombos G. Synaptosomal plasma membrane glycoproteins: fractionation by affinity chromatography on concanavalin A. Brain Res. 1975 Jan 10;83(2):337–348. doi: 10.1016/0006-8993(75)90940-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES