Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Jul 1;74(1):68–85. doi: 10.1083/jcb.74.1.68

Spermatogenic cells of the prepuberal mouse: isolation and morphological characterization

AR Bellve, JC Cavicchia, CF Millette, DA O'Brien, YM Bhatnagar, M Dym
PMCID: PMC2109873  PMID: 874003

Abstract

A procedure is described which permits the isolation from the prepuberal mouse testis of highly purified populations of primitive type A spermatogonia, type A spermatogonia, type B spermatogonia, preleptotene primary spermatocytes, leptotene and zygotene primary spermatocytes, pachytene primary spermatocytes and Sertoli cells. The successful isolation of these prepuberal cell types was accomplished by: (a) defining distinctive morphological characteristics of the cells, (b) determining the temporal appearance of spermatogenic cells during prepuberal development, (c) isolating purified seminiferous cords, after dissociation of the testis with collagenase, (d) separating the trypsin-dispersed seminiferous cells by sedimentation velocity at unit gravity, and (e) assessing the identity and purity of the isolated cell types by microscopy. The seminiferous epithelium from day 6 animals contains only primitive type A spermatogonia and Sertoli cells. Type A and type B spermatogonia are present by day 8. At day 10, meiotic prophase is initiated, with the germ cells reaching the early and late pachytene stages by 14 and 18, respectively. Secondary spermatocytes and haploid spermatids appear throughout this developmental period. The purity and optimum day for the recovery of specific cell types are as follows: day 6, Sertoli cells (purity>99 percent) and primitive type A spermatogonia (90 percent); day 8, type A spermatogonia (91 percent) and type B spermatogonia (76 percent); day 18, preleptotene spermatocytes (93 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent).

Full Text

The Full Text of this article is available as a PDF (6.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amsterdam A., Jamieson J. D. Studies on dispersed pancreatic exocrine cells. I. Dissociation technique and morphologic characteristics of separated cells. J Cell Biol. 1974 Dec;63(3):1037–1056. doi: 10.1083/jcb.63.3.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CLERMONT Y., PEREY B. Quantitative study of the cell population of the seminiferous tubules in immature rats. Am J Anat. 1957 Mar;100(2):241–267. doi: 10.1002/aja.1001000205. [DOI] [PubMed] [Google Scholar]
  3. Clermont Y., Hermo L. Spermatogonial stem cells in the albino rat. Am J Anat. 1975 Feb;142(2):159–175. doi: 10.1002/aja.1001420203. [DOI] [PubMed] [Google Scholar]
  4. Davis J. C., Schuetz A. W. Separation of germinal cells from immature rat testes by sedimentation at unit gravity. Exp Cell Res. 1975 Mar 1;91(1):79–86. doi: 10.1016/0014-4827(75)90143-3. [DOI] [PubMed] [Google Scholar]
  5. Dorrington J. H., Roller N. F., Fritz I. B. Effects of follicle-stimulating hormone on cultures of Sertoli cell preparations. Mol Cell Endocrinol. 1975 Jul;3(1):57–70. doi: 10.1016/0303-7207(75)90031-3. [DOI] [PubMed] [Google Scholar]
  6. Dym M. The fine structure of the monkey (Macaca) Sertoli cell and its role in maintaining the blood-testis barrier. Anat Rec. 1973 Apr;175(4):639–656. doi: 10.1002/ar.1091750402. [DOI] [PubMed] [Google Scholar]
  7. FAWCETT D. W. The fine structure of chromosomes in the meiotic prophase of vertebrate spermatocytes. J Biophys Biochem Cytol. 1956 Jul 25;2(4):403–406. doi: 10.1083/jcb.2.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fawcett D. W., Leak L. V., Heidger P. M., Jr Electron microscopic observations on the structural components of the blood-testis barrier. J Reprod Fertil Suppl. 1970;10:105–122. [PubMed] [Google Scholar]
  9. Flickinger C., Fawcett D. W. The junctional specializations of Sertoli cells in the seminiferous epithelium. Anat Rec. 1967 Jun;158(2):207–221. doi: 10.1002/ar.1091580210. [DOI] [PubMed] [Google Scholar]
  10. GARDNER P. J., HOLYOKE E. A. FINE STRUCTURE OF THE SEMINIFEROUS TUBULE OF THE SWISS MOUSE. I. THE LIMITING MEMBRANE, SERTOLI CELL, SPERMATOGONIA, AND SPERMATOCYTES. Anat Rec. 1964 Dec;150:391–404. doi: 10.1002/ar.1091500407. [DOI] [PubMed] [Google Scholar]
  11. Gilula N. B., Fawcett D. W., Aoki A. The Sertoli cell occluding junctions and gap junctions in mature and developing mammalian testis. Dev Biol. 1976 May;50(1):142–168. doi: 10.1016/0012-1606(76)90074-9. [DOI] [PubMed] [Google Scholar]
  12. Go V. L., Vernon R. G., Fritz I. B. Studies on spermatogenesis in rats. I. Application of the sedimentation velocity technique to an investigation of spermatogenesis. Can J Biochem. 1971 Jul;49(7):753–760. doi: 10.1139/o71-106. [DOI] [PubMed] [Google Scholar]
  13. Gondos B., Hobel C. J. Ultrastructure of germ cell development in the human fetal testis. Z Zellforsch Mikrosk Anat. 1971;119(1):1–20. doi: 10.1007/BF00330535. [DOI] [PubMed] [Google Scholar]
  14. Huckins C. The spermatogonial stem cell population in adult rats. I. Their morphology, proliferation and maturation. Anat Rec. 1971 Mar;169(3):533–557. doi: 10.1002/ar.1091690306. [DOI] [PubMed] [Google Scholar]
  15. LEBLOND C. P., CLERMONT Y. Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the periodic acid-fuchsin sulfurous acid technique. Am J Anat. 1952 Mar;90(2):167–215. doi: 10.1002/aja.1000900202. [DOI] [PubMed] [Google Scholar]
  16. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Loir M., Lanneau M. Separation of ram spermatids by sedimentation at unit gravity. Exp Cell Res. 1974 Feb;83(2):319–327. doi: 10.1016/0014-4827(74)90345-0. [DOI] [PubMed] [Google Scholar]
  18. Meistrich M. L. Separation of mouse spermatogenic cells by velocity sedimentation. J Cell Physiol. 1972 Oct;80(2):299–312. doi: 10.1002/jcp.1040800218. [DOI] [PubMed] [Google Scholar]
  19. Millette C. F., Bellvé A. R. Temporal expression of membrane antigens during mouse spermatogenesis. J Cell Biol. 1977 Jul;74(1):86–97. doi: 10.1083/jcb.74.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. NEBEL B. R., AMAROSE A. P., HACKET E. M. Calendar of gametogenic development in the prepuberal male mouse. Science. 1961 Sep 22;134(3482):832–833. doi: 10.1126/science.134.3482.832. [DOI] [PubMed] [Google Scholar]
  21. Nagano T., Suzuki F. The postnatal development of the junctional complexes of the mouse Sertoli cells as revealed by freeze-fracture. Anat Rec. 1976 Aug;185(4):403–417. doi: 10.1002/ar.1091850403. [DOI] [PubMed] [Google Scholar]
  22. Nicander L. An electron microscopical study of cell contacts in the seminiferous tubules of some mammals. Z Zellforsch Mikrosk Anat. 1967;83(3):375–397. doi: 10.1007/BF00336866. [DOI] [PubMed] [Google Scholar]
  23. Nicander L., Plöen L. Fine structure of spermatogonia and primary spermatocytes in rabbits. Z Zellforsch Mikrosk Anat. 1969;99(2):221–234. doi: 10.1007/BF00342223. [DOI] [PubMed] [Google Scholar]
  24. OAKBERG E. F. Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am J Anat. 1956 Nov;99(3):507–516. doi: 10.1002/aja.1000990307. [DOI] [PubMed] [Google Scholar]
  25. Oakberg E. F. Spermatogonial stem-cell renewal in the mouse. Anat Rec. 1971 Mar;169(3):515–531. doi: 10.1002/ar.1091690305. [DOI] [PubMed] [Google Scholar]
  26. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. ROOSEN-RUNGE E. C. Kinetics of spermatogenesis in mammals. Ann N Y Acad Sci. 1952 Nov 20;55(4):574–584. doi: 10.1111/j.1749-6632.1952.tb26577.x. [DOI] [PubMed] [Google Scholar]
  28. Roosen-Runge E. C. Germinal-cell loss in normal metazoan spermatogenesis. J Reprod Fertil. 1973 Nov;35(2):339–348. doi: 10.1530/jrf.0.0350339. [DOI] [PubMed] [Google Scholar]
  29. Steinberger A., Heindel J. J., Lindsey J. N., Elkington J. S., Sanborn B. M., Steinberger E. Isolation and culture of FSH responsive Sertoli cells. Endocr Res Commun. 1975;2(3):261–272. doi: 10.3109/07435807509053853. [DOI] [PubMed] [Google Scholar]
  30. Welsh M. J., Wiebe J. P. Rat sertoli cells: a rapid method for obtaining viable cells. Endocrinology. 1975 Mar;96(3):618–624. doi: 10.1210/endo-96-3-618. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES