Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Jul 1;74(1):136–152. doi: 10.1083/jcb.74.1.136

Light meromyosin paracrystal formation

PK Chowrashi, FA Pepe
PMCID: PMC2109875  PMID: 326798

Abstract

Studies of paracrystal formation by column purified light meromyosin (LMM) prepared in a variety of ways led to the following conclusions: (a) different portions of the myosin rod may be coded for different stagger relationships. This was concluded from observations that paracrystals with different axial repeat periodicities could be obtained either with LMM framents of different lengths prepared with the same enzyme, or with LMM fragments of identical lengths but prepared with different enzymes. (b) Paracrystals with a 14-nm axial repeat periodicity are most likely formed by the aggregation of sheets with a 44-nm axial repeat within the sheets which are staggered by 14 nm. All of the axial repeat patterns expected from one sheet or aggregates of more than one sheet, on this basis, were observed in the same electron micrograph. (c) C-protein binding probably occurs preferentially to LMM molecules related in some specific way. This was concluded from the observation that the same axial repeat pattern was obtained in paracrystals formed from different LMM preparations in the presence of C-protein, regardless of differences in the axial repeat obtained in the absence of C-protein. (d) Nucleic acid is responsible for the 43-nm axial repeat patterns observed in paracrystals formed by the ethanol-resistant fraction of LMM. In the absence of nuclei acid, paracrystals with a 14nm axial repeat are obtained. (e) The 43-nm axial repeat pattern observed with the ethanol-resistant fraction of LMM is different for LMM preparations obtained by trypsin and papain digestions.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burke M., Harrington W. F. Geometry of the myosin dimer in high-salt media. II. Hydrodynamic studies on macromodels of myosin and its rod segments. Biochemistry. 1972 Apr 11;11(8):1456–1462. doi: 10.1021/bi00758a020. [DOI] [PubMed] [Google Scholar]
  2. Cohen C., Lowey S., Harrison R. G., Kendrick-Jones J., Szent-Gyorgyi A. G. Segments from myosin rods. J Mol Biol. 1970 Feb 14;47(3):605–609. doi: 10.1016/0022-2836(70)90329-3. [DOI] [PubMed] [Google Scholar]
  3. Craig R., Offer G. The location of C-protein in rabbit skeletal muscle. Proc R Soc Lond B Biol Sci. 1976 Mar 16;192(1109):451–461. doi: 10.1098/rspb.1976.0023. [DOI] [PubMed] [Google Scholar]
  4. Harrington W. F., Burke M. Geometry of the myosin dimer in high-salt media. I. Association behavior of rod segments from myosin. Biochemistry. 1972 Apr 11;11(8):1448–1455. doi: 10.1021/bi00758a019. [DOI] [PubMed] [Google Scholar]
  5. Harrison R. G., Lowey S., Cohen C. Assembly of myosin. J Mol Biol. 1971 Aug 14;59(3):531–535. doi: 10.1016/0022-2836(71)90317-2. [DOI] [PubMed] [Google Scholar]
  6. Huxley H. E., Brown W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol. 1967 Dec 14;30(2):383–434. doi: 10.1016/s0022-2836(67)80046-9. [DOI] [PubMed] [Google Scholar]
  7. Katsura I., Noda H. Structure and polymorphism of light meromyosin aggregates. J Biochem. 1973 Feb;73(2):257–268. [PubMed] [Google Scholar]
  8. Kendrick-Jones J., Szent-Gyorgyi A. S., Cohen C. Segments from vertebrate smooth muscle myosin rods. J Mol Biol. 1971 Aug 14;59(3):527–529. doi: 10.1016/0022-2836(71)90316-0. [DOI] [PubMed] [Google Scholar]
  9. King M. V., Young M. Electron microscopy of side-by-side arrays of myosin and light meromyosin-C. J Mol Biol. 1972 Feb 14;63(3):539–555. doi: 10.1016/0022-2836(72)90446-9. [DOI] [PubMed] [Google Scholar]
  10. King M. V., Young M. Evidence for flexibility of the helical rod section of the myosin molecule. J Mol Biol. 1972 Apr 14;65(3):519–523. doi: 10.1016/0022-2836(72)90205-7. [DOI] [PubMed] [Google Scholar]
  11. King M. V., Young M. Selective non-enzymic cleavage of the myosin rod. Electron-microscopic studies on crystals and paracrystals of light meromyosin-C. J Mol Biol. 1970 Jun 14;50(2):491–507. doi: 10.1016/0022-2836(70)90207-x. [DOI] [PubMed] [Google Scholar]
  12. LOWEY S., COHEN C. Studies on the structure of myosin. J Mol Biol. 1962 Apr;4:293–308. doi: 10.1016/s0022-2836(62)80007-2. [DOI] [PubMed] [Google Scholar]
  13. Lowey S., Goldstein L., Cohen C., Luck S. M. Proteolytic degradation of myosin and the meromyosins by a water-insoluble polyanionic derivative of trypsin: properties of a helical subunit isolated from heavy meromyosin. J Mol Biol. 1967 Feb 14;23(3):287–304. doi: 10.1016/s0022-2836(67)80106-2. [DOI] [PubMed] [Google Scholar]
  14. Lowey S., Slayter H. S., Weeds A. G., Baker H. Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation. J Mol Biol. 1969 May 28;42(1):1–29. doi: 10.1016/0022-2836(69)90483-5. [DOI] [PubMed] [Google Scholar]
  15. MOMMAERTS W. F. H. M., PARRISH R. G. Studies on myosin. I. Preparation and criteria of purity. J Biol Chem. 1951 Feb;188(2):545–552. [PubMed] [Google Scholar]
  16. Moos C., Offer G., Starr R., Bennett P. Interaction of C-protein with myosin, myosin rod and light meromyosin. J Mol Biol. 1975 Sep 5;97(1):1–9. doi: 10.1016/s0022-2836(75)80017-9. [DOI] [PubMed] [Google Scholar]
  17. Nakamura A., Sreter F., Gergely J. Comparative studies of light meromyosin paracrystals derived from red, white, and cardiac muscle myosins. J Cell Biol. 1971 Jun;49(3):883–898. doi: 10.1083/jcb.49.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Offer G., Moos C., Starr R. A new protein of the thick filaments of vertebrate skeletal myofibrils. Extractions, purification and characterization. J Mol Biol. 1973 Mar 15;74(4):653–676. doi: 10.1016/0022-2836(73)90055-7. [DOI] [PubMed] [Google Scholar]
  19. Pepe F. A. Analysis of antibody staining patterns obtained with striated myofibrils in fluorescence microscopy and electron microscopy. Int Rev Cytol. 1968;24:193–231. doi: 10.1016/s0074-7696(08)61400-x. [DOI] [PubMed] [Google Scholar]
  20. Pepe F. A., Drucker B. The myosin filament. III. C-protein. J Mol Biol. 1975 Dec 25;99(4):609–617. doi: 10.1016/s0022-2836(75)80175-6. [DOI] [PubMed] [Google Scholar]
  21. Pepe F. A. The myosin filament. I. Structural organization from antibody staining observed in electron microscopy. J Mol Biol. 1967 Jul 28;27(2):203–225. doi: 10.1016/0022-2836(67)90016-2. [DOI] [PubMed] [Google Scholar]
  22. Richards E. G., Chung C. S., Menzel D. B., Olcott H. S. Chromatography of myosin on diethylaminoethyl-Sephadex A-50. Biochemistry. 1967 Feb;6(2):528–540. doi: 10.1021/bi00854a022. [DOI] [PubMed] [Google Scholar]
  23. SANTOIANNI P., AYALA M. FLUOROMETRIC ULTRAMICROANALYSIS OF DEOXYRIBONUCLEIC ACID IN HUMAN SKIN. J Invest Dermatol. 1965 Aug;45:99–103. doi: 10.1038/jid.1965.100. [DOI] [PubMed] [Google Scholar]
  24. Slayter H. S., Lowey S. Substructure of the myosin molecule as visualized by electron microscopy. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1611–1618. doi: 10.1073/pnas.58.4.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sreter F., Holtzer S., Gergely J., Holtzer H. Some properties of embryonic myosin. J Cell Biol. 1972 Dec;55(3):586–594. doi: 10.1083/jcb.55.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  27. YOUNG D. M., HIMMELFARB S., HARRINGTON W. F. ON THE STRUCTURAL ASSEMBLY OF THE POLYPEPTIDE CHAINS OF HEAVY MEROMYOSIN. J Biol Chem. 1965 Jun;240:2428–2436. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES