Abstract
Membrane topography and organization of cortical cytoskeletal elements and organelles during early embryogenesis of the mouse have been studied by transmission and scanning electron microscopy with improved cellular preservation. At the four- and early eight-cell stages, blastomeres are round, and scanning electron microscopy shows a uniform distribution of microvilli over the cell surface. At the onset of morphogenesis, a reorganization of the blastomere surface is observed in which microvilli becomes restricted to an apical region and the basal zone of intercellular contact. As the blastomeres spread on each other during compaction, many microvilli remain in the basal region of imminent cell-cell contacts, but few are present where the cells have completed spreading on each other. Microvilli on the surface of these embryos contain linear arrays of microfilaments with lateral cross bridges. Microtubules and mitochondria become localized beneath the apposed cell membranes during compaction. Arrays of cortical microtubules are aligned parallel to regions of apposed membranes. During cytokinesis, microtubules become redistributed in the region of the mitotic spindle, and fewer microvilli are present on most of the cell surface. The cell surface and cortical changes initiated during compaction are the first manifestations of cell polarity in embryogenesis. These and previous findings are interpreted as evidence that cell surface changes associated with trophoblast development appear as early as the eight-cell stage. Our observations suggest that morphogenesis involves the activation of a developmental program which coordinately controls cortical cytoplasmic and cell surface organization.
Full Text
The Full Text of this article is available as a PDF (6.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Artzt K., Dubois P., Bennett D., Condamine H., Babinet C., Jacob F. Surface antigens common to mouse cleavage embryos and primitive teratocarcinoma cells in culture. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2988–2992. doi: 10.1073/pnas.70.10.2988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biggers J. D., Borland R. M. Physiological aspects of growth and development of the preimplantation mammalian embryo. Annu Rev Physiol. 1976;38:95–119. doi: 10.1146/annurev.ph.38.030176.000523. [DOI] [PubMed] [Google Scholar]
- Burkholder G. D., Comings D. E., Okada T. A. A storage form of ribosomes in mouse oocytes. Exp Cell Res. 1971 Dec;69(2):361–371. doi: 10.1016/0014-4827(71)90236-9. [DOI] [PubMed] [Google Scholar]
- Calarco P. G., Brown E. H. An ultrastructural and cytological study of preimplantation development of the mouse. J Exp Zool. 1969 Jul;171(3):253–283. doi: 10.1002/jez.1401710303. [DOI] [PubMed] [Google Scholar]
- Calarco P. G., Epstein C. J. Cell surface changes during preimplantation development in the mouse. Dev Biol. 1973 May;32(1):208–213. doi: 10.1016/0012-1606(73)90233-9. [DOI] [PubMed] [Google Scholar]
- Ducibella T., Albertini D. F., Anderson E., Biggers J. D. The preimplantation mammalian embryo: characterization of intercellular junctions and their appearance during development. Dev Biol. 1975 Aug;45(2):231–250. doi: 10.1016/0012-1606(75)90063-9. [DOI] [PubMed] [Google Scholar]
- Ducibella T., Anderson E. Cell shape and membrane changes in the eight-cell mouse embryo: prerequisites for morphogenesis of the blastocyst. Dev Biol. 1975 Nov;47(1):45–58. doi: 10.1016/0012-1606(75)90262-6. [DOI] [PubMed] [Google Scholar]
- Epstein C. J. Gene expression and macromolecular synthesis during preimplantation embryonic development. Biol Reprod. 1975 Feb;12(1):82–105. doi: 10.1095/biolreprod12.1.82. [DOI] [PubMed] [Google Scholar]
- Freed J. J., Lebowitz M. M. The association of a class of saltatory movements with microtubules in cultured cells. J Cell Biol. 1970 May;45(2):334–354. doi: 10.1083/jcb.45.2.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman R. D., Berg G., Bushnell A., Chang C. M., Dickerman L., Hopkins N., Miller M. L., Pollack R., Wang E. Fibrillar systems in cell motility. Ciba Found Symp. 1973;14:83–107. doi: 10.1002/9780470719978.ch5. [DOI] [PubMed] [Google Scholar]
- Gulyas B. J. Cytokinesis in the rabbit zygote: fine-structural study of the contractile ring and the mid-body. Anat Rec. 1973 Oct;177(2):195–207. doi: 10.1002/ar.1091770202. [DOI] [PubMed] [Google Scholar]
- Herbert M. C., Graham C. F. Cell determination and biochemical differentiation of the early mammalian embryo. Curr Top Dev Biol. 1974;8:151–178. doi: 10.1016/s0070-2153(08)60608-0. [DOI] [PubMed] [Google Scholar]
- Lin P. S., Wallach D. F. Surface modification of T-lymphocytes observed during rosetting. Science. 1974 Jun 21;184(4143):1300–1301. doi: 10.1126/science.184.4143.1300. [DOI] [PubMed] [Google Scholar]
- MCNABB J. D., SANDBORN E. FILAMENTS IN THE MICROVILLOUS BORDER OF INTESTINAL CELLS. J Cell Biol. 1964 Sep;22:701–704. doi: 10.1083/jcb.22.3.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazia D., Schatten G., Sale W. Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. J Cell Biol. 1975 Jul;66(1):198–200. doi: 10.1083/jcb.66.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mooseker M. S., Tilney L. G. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol. 1975 Dec;67(3):725–743. doi: 10.1083/jcb.67.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muggleton-Harris A. L., Johnson M. H. The nature and distribution of serologically detectable alloantigens on the preimplantation mouse embryo. J Embryol Exp Morphol. 1976 Feb;35(1):59–72. [PubMed] [Google Scholar]
- Mulnard J. G. Analyse microcinématographique du développement de l'oeuf de souris du stade II au blastocyste. Arch Biol (Liege) 1967;78(1):107–139. [PubMed] [Google Scholar]
- Pinsker M. C., Mintz B. Change in cell-surface glycoproteins of mouse embryos before implantation. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1645–1648. doi: 10.1073/pnas.70.6.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porter K. R. Microtubules in intracellular locomotion. Ciba Found Symp. 1973;14:149–169. doi: 10.1002/9780470719978.ch7. [DOI] [PubMed] [Google Scholar]
- Porter K. R., Puck T. T., Hsie A. W., Kelley D. An electron microscopy study of the effects on dibutyryl cyclic AMP on Chinese hamster ovary cells. Cell. 1974 Jul;2(3):145–162. doi: 10.1016/0092-8674(74)90089-0. [DOI] [PubMed] [Google Scholar]
- Porter K., Prescott D., Frye J. Changes in surface morphology of Chinese hamster ovary cells during the cell cycle. J Cell Biol. 1973 Jun;57(3):815–836. doi: 10.1083/jcb.57.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raine C. S., Ghetti B., Shelanski M. L. On the association between microtubules and mitochondria within axons. Brain Res. 1971 Nov;34(2):389–393. doi: 10.1016/0006-8993(71)90293-9. [DOI] [PubMed] [Google Scholar]
- Rebhun L. I. Polarized intracellular particle transport: saltatory movements and cytoplasmic streaming. Int Rev Cytol. 1972;32:93–137. doi: 10.1016/s0074-7696(08)60339-3. [DOI] [PubMed] [Google Scholar]
- Rubin R. W., Everhart L. P. The effect of cell-to-cell contact on the surface morphology of Chinese hamster ovary cells. J Cell Biol. 1973 Jun;57(3):837–844. doi: 10.1083/jcb.57.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato T. A modified method for lead staining of thin sections. J Electron Microsc (Tokyo) 1968;17(2):158–159. [PubMed] [Google Scholar]
- Stern S., Biggers J. D., Anderson E. Mitochondria and early development of the mouse. J Exp Zool. 1971 Feb;176(2):179–191. doi: 10.1002/jez.1401760206. [DOI] [PubMed] [Google Scholar]
- Szollosi D. Cortical cytoplasmic filaments of cleaving eggs: a structural element corresponding to the contractile ring. J Cell Biol. 1970 Jan;44(1):192–209. doi: 10.1083/jcb.44.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tarkowski A. K., Wróblewska J. Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J Embryol Exp Morphol. 1967 Aug;18(1):155–180. [PubMed] [Google Scholar]
- Ukena T. E., Karnovsky M. J. Patching, microvilli, and the agglutination of normal and transformed cells. Prog Clin Biol Res. 1976;9:261–273. [PubMed] [Google Scholar]
- Vitetta E. S., Artzt K., Bennett D., Boyse E. A., Jacob F. Structural similarities between a product of the T/t-locus isolated from sperm and teratoma cells, and H-2 antigens isolated from splenocytes. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3215–3219. doi: 10.1073/pnas.72.8.3215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiley L. M., Calarco P. G. The effects of anti-embryo sera and their localization on the cell surface during mouse preimplantation development. Dev Biol. 1975 Dec;47(2):407–418. doi: 10.1016/0012-1606(75)90294-8. [DOI] [PubMed] [Google Scholar]
- Willingham M. C., Pastan I. Cyclic amp and cell morphology in cultured fibroblasts. Effects on cell shape, microfilament and microtubule distribution, and orientation to substratum. J Cell Biol. 1975 Oct;67(1):146–159. doi: 10.1083/jcb.67.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]