Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Apr 1;73(1):242–256. doi: 10.1083/jcb.73.1.242

Role of microtubule assembly in lysosomal enzyme secretion from human polymorphonuclear leukocytes. A reevaluation

PMCID: PMC2109893  PMID: 856834

Abstract

The dose-related inhibition by colchicine of both lysosomal enzyme release and microtubule assembly was studied in human polymorphonuclear leukocytes (PMN) exposed to the nonphagocytic stimulus, zymosan-treated serum (ZTS). Cells were pretreated with colchicine (60 min, 37 degrees C) with or without cytochalasin B (5 microng/ml, 10 min) and then stimulated with ZTS (10%). Microtubule numbers in both cytochalasin B- treated and untreated PMN were increased by stimulation and depressed below resting levels in a dose-response fashion by colchicine concentrations above 10(-7) M. These concentrations also inhibited enzyme release in a dose-response fashion although the inhibition of microtubule assembly was proportionately greater than the inhibition of enzyme release. Other aspects of PMN morphology were affected by colchicine. Cytochalasin B-treated PMN were rounded, and in thin sections the retracted plasma membrane appeared as invaginations oriented toward centrally located centrioles. Membrane invaginations were restricted to the cell periphery in cells treated with inhibitory concentrations of colchicine, and the centrioles and Golgi apparatus were displaced from their usual position. After stimulation and subsequent degranulation, the size and number of membrane invaginations greatly increased. They remained peripheral in cells pretreated with greater than 10(-7) M colchicine but were numerous in the pericentriolar region in cells treated with less than 10(-7) M. Similarly, untreated PMN that were permitted to phagocytose immune precipitates had many phagosomes adjacent to the centriole. After colchicine treatment, phagosomes were distributed randomly, without any preferential association with the centrioles. These data suggest that microtubules are involved in maintaining the internal organization of cells and the topologic relationships between organelles and the plasma membrane.

Full Text

The Full Text of this article is available as a PDF (5.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhattacharyya B., Volff J. Membrane-bound tubulin in brain and thyroid tissue. J Biol Chem. 1975 Oct 10;250(19):7639–7646. [PubMed] [Google Scholar]
  2. Butcher F. R., Goldman R. H. Effect of cytochalasin B and colchicine on the stimulation of -amylase release from rat parotid tissue slices. Biochem Biophys Res Commun. 1972 Jul 11;48(1):23–29. doi: 10.1016/0006-291x(72)90338-5. [DOI] [PubMed] [Google Scholar]
  3. Freed J. J., Lebowitz M. M. The association of a class of saltatory movements with microtubules in cultured cells. J Cell Biol. 1970 May;45(2):334–354. doi: 10.1083/jcb.45.2.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goldstein I., Hoffstein S., Gallin J., Weissmann G. Mechanisms of lysosomal enzyme release from human leukocytes: microtubule assembly and membrane fusion induced by a component of complement. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2916–2920. doi: 10.1073/pnas.70.10.2916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hartwig J. H., Stossel T. P. Interactions of actin, myosin, and an actin-binding protein of rabbit pulmonary macrophages. III. Effects of cytochalasin B. J Cell Biol. 1976 Oct;71(1):295–303. doi: 10.1083/jcb.71.1.295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Henson P. M. The immunologic release of constituents from neutrophil leukocytes. I. The role of antibody and complement on nonphagocytosable surfaces or phagocytosable particles. J Immunol. 1971 Dec;107(6):1535–1546. [PubMed] [Google Scholar]
  7. Hoffstein S., Soberman R., Goldstein I., Weissmann G. Concanavalin A induces microtubule assembly and specific granule discharge in human polymorphonuclear leukocytes. J Cell Biol. 1976 Mar;68(3):781–787. doi: 10.1083/jcb.68.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hoffstein S., Zurier R. B., Weissmann G. Mechanisms of lysosomal enzyme release from human leucocytes. III. Quantitative morphologic evidence for an effect of cyclic nucleotides and colchicine on degranulation. Clin Immunol Immunopathol. 1974 Nov;3(2):201–217. doi: 10.1016/0090-1229(74)90006-3. [DOI] [PubMed] [Google Scholar]
  9. Malawista S. E., Bodel P. T. The dissociation by colchicine of phagocytosis from increased oxygen consumption in human leukocytes. J Clin Invest. 1967 May;46(5):786–796. doi: 10.1172/JCI105579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Malawista S. E. The action of colchicine in acute gouty arthritis. Arthritis Rheum. 1975 Nov-Dec;18(6 Suppl):835–846. doi: 10.1002/art.1780180729. [DOI] [PubMed] [Google Scholar]
  11. Malawista S. E. Vinblastine: colchicine-like effects on human blood leukocytes during phagocytosis. Blood. 1971 May;37(5):519–529. [PubMed] [Google Scholar]
  12. Oronsky A., Ignarro L., Perper R. Release of cartilage mucopolysaccharide-degrading neutral protease from human leukocytes. J Exp Med. 1973 Aug 1;138(2):461–472. doi: 10.1084/jem.138.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pesanti E. L., Axline S. G. Colchicine effects on lysosomal enzyme induction and intracellular degradation in the cultivated macrophage. J Exp Med. 1975 May 1;141(5):1030–1046. doi: 10.1084/jem.141.5.1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pesanti E. L., Axline S. G. Phagolysosome formation in normal and colchicine-treated macrophages. J Exp Med. 1975 Oct 1;142(4):903–913. doi: 10.1084/jem.142.4.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Poisner A. M., Cooke P. Microtubules and the adrenal medulla. Ann N Y Acad Sci. 1975 Jun 30;253:653–669. doi: 10.1111/j.1749-6632.1975.tb19235.x. [DOI] [PubMed] [Google Scholar]
  16. Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
  17. Reaven E. P., Reaven G. M. A quantitative ultrastructural study of microtubule content and secretory granule accumulation in parathyroid glands of phosphate- and colchicine-treated rats. J Clin Invest. 1975 Jul;56(1):49–55. doi: 10.1172/JCI108078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Redman C. M., Banerjee D., Howell K., Palade G. E. Colchicine inhibition of plasma protein release from rat hepatocytes. J Cell Biol. 1975 Jul;66(1):42–59. doi: 10.1083/jcb.66.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stadler J., Franke W. W. Characterization of the colchicine binding of membrane fractions from rat and mouse liver. J Cell Biol. 1974 Jan;60(1):297–303. doi: 10.1083/jcb.60.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stadler J., Franke W. W. Colchicine-binding proteins in chromatin and membranes. Nat New Biol. 1972 Jun 21;237(77):237–238. doi: 10.1038/newbio237237a0. [DOI] [PubMed] [Google Scholar]
  21. Stossel T. P., Pollard T. D. Myosin in polymorphonuclear leukocytes. J Biol Chem. 1973 Dec 10;248(23):8288–8294. [PubMed] [Google Scholar]
  22. ULMER D. D., VALLEE B. L., WACKER W. E. Metalloenzymes and myocardial infarction. II. Malic and lactic dehydrogenase activities and zinc concentrations in serum. N Engl J Med. 1956 Sep 6;255(10):450–456. doi: 10.1056/NEJM195609062551001. [DOI] [PubMed] [Google Scholar]
  23. Weissmann G., Goldstein I., Hoffstein S., Tsung P. K. Reciprocal effects of cAMP and cGMP on microtubule-dependent release of lysosomal enzymes. Ann N Y Acad Sci. 1975 Jun 30;253:750–762. doi: 10.1111/j.1749-6632.1975.tb19243.x. [DOI] [PubMed] [Google Scholar]
  24. Weissmann G., Zurier R. B., Hoffstein S. Leukocytic proteases and the immunologic release of lysosomal enzymes. Am J Pathol. 1972 Sep;68(3):539–564. [PMC free article] [PubMed] [Google Scholar]
  25. Weissmann G., Zurier R. B., Spieler P. J., Goldstein I. M. Mechanisms of lysosomal enzyme release from leukocytes exposed to immune complexes and other particles. J Exp Med. 1971 Sep 1;134(3 Pt 2):149s–165s. [PubMed] [Google Scholar]
  26. Wilson L. Action of drugs on microtubules. Life Sci. 1975 Aug 1;17(3):303–309. doi: 10.1016/0024-3205(75)90476-2. [DOI] [PubMed] [Google Scholar]
  27. Wilson L., Bamburg J. R., Mizel S. B., Grisham L. M., Creswell K. M. Interaction of drugs with microtubule proteins. Fed Proc. 1974 Feb;33(2):158–166. [PubMed] [Google Scholar]
  28. Wolff J., Bhattacharyya B. Microtubules and thyroid hormone mobilization. Ann N Y Acad Sci. 1975 Jun 30;253:763–770. doi: 10.1111/j.1749-6632.1975.tb19244.x. [DOI] [PubMed] [Google Scholar]
  29. Wright D. G., Malawista S. E. Mobilization and extracellular release of granular enzymes from human leukocytes during phagocytosis: inhibition by colchicine and cortisol but not by salicylate. Arthritis Rheum. 1973 Nov-Dec;16(6):749–758. doi: 10.1002/art.1780160608. [DOI] [PubMed] [Google Scholar]
  30. Zurier R. B., Hoffstein S., Weissmann G. Cytochalasin B: effect on lysosomal enzyme release from human leukocytes. Proc Natl Acad Sci U S A. 1973 Mar;70(3):844–848. doi: 10.1073/pnas.70.3.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zurier R. B., Hoffstein S., Weissmann G. Mechanisms of lysosomal enzyme release from human leukocytes. I. Effect of cyclic nucleotides and colchicine. J Cell Biol. 1973 Jul;58(1):27–41. doi: 10.1083/jcb.58.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zurier R. B., Weissmann G., Hoffstein S., Kammerman S., Tai H. H. Mechanisms of lysosomal enzyme release from human leukocytes. II. Effects of cAMP and cGMP, autonomic agonists, and agents which affect microtubule function. J Clin Invest. 1974 Jan;53(1):297–309. doi: 10.1172/JCI107550. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES