Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Apr 1;73(1):161–181. doi: 10.1083/jcb.73.1.161

Membrane fusion during secretion. A hypothesis based on electron microscope observation of Phytophthora Palmivora zoospores during encystment

PMCID: PMC2109897  PMID: 856830

Abstract

Interpretation of freeze-fracture and thin-section results shows that fusion of the peripheral vesicle with the plasmalemma of a Phytophthora palmivora zoospore occurs at several discrete sites and results in the formation and expansion of a particle-free bilayer membrane diaphragm and in the appearance of a polymorphic network of membrane-bounded tunnels, the lumina of which are continuous with the cytoplasm. The outer half of the bilayer membrane diaphragm appears continuous with the outer half of the plasma membrane; the inner half of the bilayer membrane diaphragm with the inner half of the peripheral vesicle membrane; and the inner half of the plasmalemma with the outer half of the peripheral vesicle membrane. Interpretation of our results leads us to formulate a hypothesis for a sequence of several intermediate stages involved in membrane fusion. The initial fusion event is viewed as a local catastrophe (Thom, R. 1972. Stabilite Structurelle et Morphogenese. W. A. Benjamin Inc., Reading, Mass.) involving the sudden reorganization of apposed elements of the inner half of the plasmalemma and the outer half of the peripheral vesicle membrane. Fusion of apposed components at the rim of the perimeter of fusion results in the formation of a toroid hemi-micelle which provides continuity between the inner half of the plasmalemma and the outer half of the peripheral vesicle membrane. Simultaneously, apposed components at the site of fusion may reorganize into an inverted membrane micelle. A bilayer membrane diaphragm is then formed by apposition and flowing of components form the outer half of the plasmalemma and the inner (exoplasmic) half of the peripheral vesicle membrane. The existence of large areas of membrane contact before fusion may lead to several fusion events and the formation of a polymorphic network of membrane- bound tunnels.

Full Text

The Full Text of this article is available as a PDF (9.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahkong Q. F., Fisher D., Tampion W., Lucy J. A. Mechanisms of cell fusion. Nature. 1975 Jan 17;253(5488):194–195. doi: 10.1038/253194a0. [DOI] [PubMed] [Google Scholar]
  2. Branton D., Bullivant S., Gilula N. B., Karnovsky M. J., Moor H., Mühlethaler K., Northcote D. H., Packer L., Satir B., Satir P. Freeze-etching nomenclature. Science. 1975 Oct 3;190(4209):54–56. doi: 10.1126/science.1166299. [DOI] [PubMed] [Google Scholar]
  3. Deamer D. W. Isolation and characterization of a lysolecithin-adenosine triphosphatase complex from lobster muscle microsomes. J Biol Chem. 1973 Aug 10;248(15):5477–5485. [PubMed] [Google Scholar]
  4. Franke W. W. Nuclear envelopes. Structure and biochemistry of the nuclear envelope. Philos Trans R Soc Lond B Biol Sci. 1974 Jul 25;268(891):67–93. doi: 10.1098/rstb.1974.0016. [DOI] [PubMed] [Google Scholar]
  5. Friederici H. H. On the diaphragm across fenestrae of capillary endothelium. J Ultrastruct Res. 1969 May;27(3):373–375. doi: 10.1016/s0022-5320(69)80024-9. [DOI] [PubMed] [Google Scholar]
  6. Friederici H. H. The tridimensional ultrastructure of fenestrated capillaries. J Ultrastruct Res. 1968 Jun;23(5):444–456. doi: 10.1016/s0022-5320(68)80109-1. [DOI] [PubMed] [Google Scholar]
  7. Grant C. W., McConnell H. M. Glycophorin in lipid bilayers. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4653–4657. doi: 10.1073/pnas.71.12.4653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hemmes D. E., Hohl H. R. Ultrastructural aspects of encystation and cyst-germination in Phytophthora parasitica. J Cell Sci. 1971 Jul;9(1):175–191. doi: 10.1242/jcs.9.1.175. [DOI] [PubMed] [Google Scholar]
  9. Hong K., Hubbell W. L. Preparation and properties of phospholipid bilayers containing rhodopsin. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2617–2621. doi: 10.1073/pnas.69.9.2617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lucy J. A. The fusion of biological membranes. Nature. 1970 Aug 22;227(5260):815–817. doi: 10.1038/227815a0. [DOI] [PubMed] [Google Scholar]
  11. Marchesi V. T., Furthmayr H., Tomita M. The red cell membrane. Annu Rev Biochem. 1976;45:667–698. doi: 10.1146/annurev.bi.45.070176.003315. [DOI] [PubMed] [Google Scholar]
  12. Marchesi V. T., Tillack T. W., Jackson R. L., Segrest J. P., Scott R. E. Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1445–1449. doi: 10.1073/pnas.69.6.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Maul G. G., Price J. W., Lieberman M. W. Formation and distribution of nuclear pore complexes in interphase. J Cell Biol. 1971 Nov;51(21):405–418. doi: 10.1083/jcb.51.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Maul G. G. Structure and formation of pores in fenestrated capillaries. J Ultrastruct Res. 1971 Sep;36(5):768–782. doi: 10.1016/s0022-5320(71)90030-x. [DOI] [PubMed] [Google Scholar]
  15. Palade G. E., Bruns R. R. Structural modulations of plasmalemmal vesicles. J Cell Biol. 1968 Jun;37(3):633–649. doi: 10.1083/jcb.37.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  17. Pinto da Silva P., Branton D. Membrane splitting in freeze-ethching. Covalently bound ferritin as a membrane marker. J Cell Biol. 1970 Jun;45(3):598–605. doi: 10.1083/jcb.45.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pinto da Silva P., Douglas S. D., Branton D. Localization of A antigen sites on human erythrocyte ghosts. Nature. 1971 Jul 16;232(5307):194–196. doi: 10.1038/232194a0. [DOI] [PubMed] [Google Scholar]
  19. Pinto da Silva P., Fudenberg H. H. Anionic sites on the membrane intercalated particles of human erythrocyte ghost membranes. Freeze-etch localization. Exp Cell Res. 1973 Sep;81(1):127–138. doi: 10.1016/0014-4827(73)90119-5. [DOI] [PubMed] [Google Scholar]
  20. Poste G., Allison A. C. Membrane fusion reaction: a theory. J Theor Biol. 1971 Jul;32(1):165–184. doi: 10.1016/0022-5193(71)90144-5. [DOI] [PubMed] [Google Scholar]
  21. Poste G., Allison A. C. Membrane fusion. Biochim Biophys Acta. 1973 Dec 28;300(4):421–465. doi: 10.1016/0304-4157(73)90015-4. [DOI] [PubMed] [Google Scholar]
  22. RHODIN J. A. The diaphragm of capillary endothelial fenestrations. J Ultrastruct Res. 1962 Apr;6:171–185. doi: 10.1016/s0022-5320(62)90052-7. [DOI] [PubMed] [Google Scholar]
  23. Ryan U. S., Ryan J. W., Smith D. S., Winkler H. Fenestrated endothelium of the adrenal gland: freeze-fracture studies. Tissue Cell. 1975;7(1):181–190. doi: 10.1016/s0040-8166(75)80015-2. [DOI] [PubMed] [Google Scholar]
  24. Satir B., Schooley C., Satir P. Membrane fusion in a model system. Mucocyst secretion in Tetrahymena. J Cell Biol. 1973 Jan;56(1):153–176. doi: 10.1083/jcb.56.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Satir B., Schooley C., Satir P. Membrane reorganization during secretion in Tetrahymena. Nature. 1972 Jan 7;235(5332):53–54. doi: 10.1038/235053a0. [DOI] [PubMed] [Google Scholar]
  26. Silva P. P., Nicolson G. L. Freeze-etch localization of concanavalin A receptors to the membrane intercalated particles of human erythrocyte ghost membranes. Biochim Biophys Acta. 1974 Sep 23;363(3):311–319. doi: 10.1016/0005-2736(74)90071-6. [DOI] [PubMed] [Google Scholar]
  27. Sing V. O., Bartnicki-Garcia S. Adhesion of Phytophthora palmivora zoospores: detection and ultrastructural visualization of concanavalin A-receptor sites appearing during encystment. J Cell Sci. 1975 Oct;19(1):11–20. doi: 10.1242/jcs.19.1.11. [DOI] [PubMed] [Google Scholar]
  28. Smith U., Smith D. S., Winkler H., Ryan J. W. Exocytosis in the adrenal medulla demonstrated by freeze-etching. Science. 1973 Jan 5;179(4068):79–82. doi: 10.1126/science.179.4068.79. [DOI] [PubMed] [Google Scholar]
  29. Tandler B., Poulsen J. H. Fusion of the envelope of mucous droplets with the luminal plasma membrane in acinar cells of the cat submandibular gland. J Cell Biol. 1976 Mar;68(3):775–781. doi: 10.1083/jcb.68.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tokunaga J., Bartnicki-Garcia S. Cyst wall formation and endogenous carbohydrate utilization during synchronous encystment of Phytophthora palmivora zoospores. Arch Mikrobiol. 1971;79(4):283–292. doi: 10.1007/BF00424905. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES