Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Apr 1;73(1):88–110. doi: 10.1083/jcb.73.1.88

Localization of Na+-pump sites in frog skin

PMCID: PMC2109898  PMID: 140176

Abstract

The localization of Na+-pump sites (Na+-K+-ATPase) in the frog skin epithelium was determined by a freeze-dry radioautographic method for identifying [3H]ouabain-binding sites. Ventral pelvic skins of Rana catesbeiana were mounted in Ussing chambers and exposed to 10(-6) M [3H]ouabain for 120 min, washed in ouabain-free Ringer's solution for 60 min, and then processed for radioautography. Ouabain-binding sites were localized on the inward facing (serosal) membranes of all the living cells. Quantitative analysis of grain distribution showed that the overwhelming majority of Na+-pump sites were localized deep to the outer living cell layer, i.e., in the stratum spinosum and stratum germinativum. Binding of ouabain was correlated with inhibition of Na+ transport. Specificity of ouabain binding to Na+-K+-ATPase was verified by demonstrating its sensitivity to the concentration of ligands (K+, ATP) that affect binding of ouabain to the enzyme. Additional studies supported the conclusion that the distribution of bound ouabain reflects the distribution of those pumps involved in the active transepithelial transport of Na+. After a 30-min exposure to [3H]ouabain, Na+ transport declined to a level that was significantly less than that in untreated paired controls, and analysis of grain distribution showed that over 90% of the ouabain-binding sites were localized to the inner cell layers. Furthermore, in skins where Na+ transport had been completely inhibited by exposure to 10(-5) M ouabain, the grain distribution was identical to that in skins exposed to 10(-6) M. The results support a model which depicts all the living cell layers functioning as a syncytium with regard to the active transepithelial transport of Na+.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. C., Schwartz A. Effects of potassium, temperature and time on ouabain interaction with the cardiac Na+, K+-ATPase: further evidence supporting an allosteric site. J Mol Cell Cardiol. 1970 Mar;1(1):39–45. doi: 10.1016/0022-2828(70)90027-1. [DOI] [PubMed] [Google Scholar]
  2. BELANGER L. F. Staining processed radioautographs. Stain Technol. 1961 Sep;36:313–317. doi: 10.3109/10520296109113298. [DOI] [PubMed] [Google Scholar]
  3. Baker P. F., Willis J. S. Binding of the cardiac glycoside ouabain to intact cells. J Physiol. 1972 Jul;224(2):441–462. doi: 10.1113/jphysiol.1972.sp009904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker P. F., Willis J. S. Potassium ions and the binding of cardiac glycosides to mammalian cells. Nature. 1970 May 9;226(5245):521–523. doi: 10.1038/226521a0. [DOI] [PubMed] [Google Scholar]
  5. Budtz P. E., Larsen L. O. Structure of the toad epidermis during the moulting cycle. L. Light microscopic observations in Bufo bufo (L.). Z Zellforsch Mikrosk Anat. 1973 Nov 7;144(3):353–368. doi: 10.1007/BF00307582. [DOI] [PubMed] [Google Scholar]
  6. Cereijido M., Rotunno C. A. Fluxes and Distribution of Sodium in Frog Skin : A new model. J Gen Physiol. 1968 May 1;51(5):280–289. [PMC free article] [PubMed] [Google Scholar]
  7. Civan M. M., Hoffman R. E. Effect of aldosterone on electrical resistance of toad bladder. Am J Physiol. 1971 Feb;220(2):324–328. doi: 10.1152/ajplegacy.1971.220.2.324. [DOI] [PubMed] [Google Scholar]
  8. DEWEY M. M., BARR L. A STUDY OF THE STRUCTURE AND DISTRIBUTION OF THE NEXUS. J Cell Biol. 1964 Dec;23:553–585. doi: 10.1083/jcb.23.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dunham P. B., Gunn R. B. Adenosine triphosphatase and active cation transport in red blood cell membranes. Arch Intern Med. 1972 Feb;129(2):241–247. [PubMed] [Google Scholar]
  10. Dörge A., Gehring K., Nagel W., Thurau K. Localization of sodium in frog skin by electron microprobe analysis. Naunyn Schmiedebergs Arch Pharmacol. 1974;281(3):271–280. doi: 10.1007/BF00500596. [DOI] [PubMed] [Google Scholar]
  11. Ernst S. A., Goertemiller C. C., Jr, Ellis R. A. The effect of salt regimens on the development of (Na+K+)-dependent ATPase activity during the growth of salt glands of ducklings. Biochim Biophys Acta. 1967 Sep 9;135(4):682–692. doi: 10.1016/0005-2736(67)90098-3. [DOI] [PubMed] [Google Scholar]
  12. Ernst S. A., Philpott C. W. Pservation of Na-K-activated and Mg-activated adenosine triphosphatase activities of avian salt gland and teleost gill with formaldehyde as fixative. J Histochem Cytochem. 1970 Apr;18(4):251–263. doi: 10.1177/18.4.251. [DOI] [PubMed] [Google Scholar]
  13. Ernst S. A. Transport adenosine triphosphatase cytochemistry. I. Biochemical characterization of a cytochemical medium for the ultrastructural localization of ouabain-sensitive, potassium-dependent phosphatase activity in the avian salt gland. J Histochem Cytochem. 1972 Jan;20(1):13–22. doi: 10.1177/20.1.13. [DOI] [PubMed] [Google Scholar]
  14. Ernst S. A. Transport adenosine triphosphatase cytochemistry. II. Cytochemical localization of ouabin-sensitive, potassium-dependent phosphatase activity in the secretory epithelium of the avian salt gland. J Histochem Cytochem. 1972 Jan;20(1):23–38. doi: 10.1177/20.1.23. [DOI] [PubMed] [Google Scholar]
  15. Farquhar M. G., Palade G. E. Adenosine triphosphatase localization in amphibian epidermis. J Cell Biol. 1966 Aug;30(2):359–379. doi: 10.1083/jcb.30.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gardner J. D., Conlon T. P. The effects of sodium and potassium on ouabain binding by human erythrocytes. J Gen Physiol. 1972 Nov;60(5):609–629. doi: 10.1085/jgp.60.5.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Handler J. S., Preston A. S., Rogulski J. Control of glycogenolysis in the toad's urinary bladder. The effect of anaerobiosis, sodium transport, and arginine vasotocin. J Biol Chem. 1968 Apr 10;243(7):1376–1383. [PubMed] [Google Scholar]
  19. Hoffman J. F. The Interaction between Tritiated Ouabain and the Na-K Pump in Red Blood Cells. J Gen Physiol. 1969 Jul 1;54(1):343–353. [PMC free article] [PubMed] [Google Scholar]
  20. Hokin L. E., Dahl J. L., Deupree J. D., Dioxon J. F., Hackney J. F., Perdue J. F. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. X. Purification of the enzyme from the rectal gland of Squalus acanthias. J Biol Chem. 1973 Apr 10;248(7):2593–2605. [PubMed] [Google Scholar]
  21. KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
  22. Kristensen P., Schousboe A. The influence of anaerobic conditions on sodium transport and adenine nucleotide levels in the isolated skin of the frog Rana temporaria. Biochim Biophys Acta. 1969 Mar 11;173(2):206–212. doi: 10.1016/0005-2736(69)90104-7. [DOI] [PubMed] [Google Scholar]
  23. Kyte J. The titration of the cardiac glycoside binding site of the (Na+ + K+)-adenosine triphosphatase. J Biol Chem. 1972 Dec 10;247(23):7634–7641. [PubMed] [Google Scholar]
  24. Matsui H., Schwartz A. Mechanism of cardiac glycoside inhibition of the (Na+-K+)-dependent ATPase from cardiac tissue. Biochim Biophys Acta. 1968 Mar 25;151(3):655–663. doi: 10.1016/0005-2744(68)90013-2. [DOI] [PubMed] [Google Scholar]
  25. Mills J. W., Ernst S. A. Localization of sodium pump sites in frog urinary bladder. Biochim Biophys Acta. 1975 Jan 28;375(2):268–273. doi: 10.1016/0005-2736(75)90194-7. [DOI] [PubMed] [Google Scholar]
  26. Quinton P. M., Wright E. M., Tormey J. M. Localization of sodium pumps in the choroid plexus epithelium. J Cell Biol. 1973 Sep;58(3):724–730. doi: 10.1083/jcb.58.3.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
  28. Sachs J. R., Dunham P. B., Kropp D. L., Ellory J. C., Hoffman J. F. Interaction of HK and LK goat red blood cells with ouabain. J Gen Physiol. 1974 Nov;64(5):536–550. doi: 10.1085/jgp.64.5.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schwartz A., Lindenmayer G. E., Allen J. C. The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharmacol Rev. 1975 Mar;27(01):3–134. [PubMed] [Google Scholar]
  30. Smith P. G. The low-frequency electrical impedance of the isolated frog skin. Acta Physiol Scand. 1971 Mar;81(3):355–366. doi: 10.1111/j.1748-1716.1971.tb04910.x. [DOI] [PubMed] [Google Scholar]
  31. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  32. Stirling C. E. High-resolution autoradiography of 3H-ouabain binding in salt transporting epithelia. J Microsc. 1976 Mar;106(2):145–157. doi: 10.1111/j.1365-2818.1976.tb02397.x. [DOI] [PubMed] [Google Scholar]
  33. Stirling C. E. Radioautographic localization of sodium pump sites in rabbit intestine. J Cell Biol. 1972 Jun;53(3):704–714. doi: 10.1083/jcb.53.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tobin T., Sen A. K. Stability and ligand sensitivity of (3H)ouabain binding to (Na+ + K+)ATPase. Biochim Biophys Acta. 1970 Jan 14;198(1):120–131. doi: 10.1016/0005-2744(70)90040-9. [DOI] [PubMed] [Google Scholar]
  35. USSING H. H., WINDHAGER E. E. NATURE OF SHUNT PATH AND ACTIVE SODIUM TRANSPORT PATH THROUGH FROG SKIN EPITHELIUM. Acta Physiol Scand. 1964 Aug;61:484–504. [PubMed] [Google Scholar]
  36. Voûte C. L., Ussing H. H. Some morphological aspects of active sodium transport. The epithelium of the frog skin. J Cell Biol. 1968 Mar;36(3):625–638. doi: 10.1083/jcb.36.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. WACHSTEIN M., MEISEL E. Histochemistry of hepatic phosphatases of a physiologic pH; with special reference to the demonstration of bile canaliculi. Am J Clin Pathol. 1957 Jan;27(1):13–23. doi: 10.1093/ajcp/27.1.13. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES