Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Apr 1;73(1):257–260. doi: 10.1083/jcb.73.1.257

Distribution of bicarbonate-stimulated ATPase in rat intestinal epithelium

PMCID: PMC2109899  PMID: 140175

Abstract

This study reports on the distribution of bicarbonate-stimulated ATPase in rat intestinal epithelial cells. Brush-border membranes and basolateral membranes were separated from each other and from mitochondrial and other intracellular membranes by differential and density gradient centrifugation. Bicarbonate-sensitive ATPase activity followed the mitochondrial marker succinic dehydrogenase closely throughout all the centrifugation steps. The low HCO3--ATPase activity in purified brush-border and basolateral plasma membranes could be accounted for quantitatively by the small mitochondrial contamination. Consequently, there are no grounds for postulating that this enzyme has a direct role in H+ or HCO3- transport across the rat small intestine.

Full Text

The Full Text of this article is available as a PDF (244.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Izutsu K. T., Siegel I. A. A microsomal HCO 2 -stimulated ATPase from the dog submandibular gland. Biochim Biophys Acta. 1972 Oct 12;284(2):478–484. doi: 10.1016/0005-2744(72)90146-5. [DOI] [PubMed] [Google Scholar]
  2. Kasbekar D. K., Durbin R. P. An adenosine triphosphatase from frog gastric mucosa. Biochim Biophys Acta. 1965 Sep 20;105(3):472–482. doi: 10.1016/s0926-6593(65)80232-6. [DOI] [PubMed] [Google Scholar]
  3. Katz A. I., Epstein F. H. Effect of anions on adenosine triphosphatase of kidney tissue. Enzyme. 1971;12(4):499–507. doi: 10.1159/000459575. [DOI] [PubMed] [Google Scholar]
  4. Kinne-Saffran E., Kinne R. Presence of bicarbonate stimulated ATPase in the brush border microvillus membranes of the proximal tubule. Proc Soc Exp Biol Med. 1974 Jul;146(3):751–753. doi: 10.3181/00379727-146-38186. [DOI] [PubMed] [Google Scholar]
  5. Mircheff A. K., Wright E. M. Analytical isolation of plasma membranes of intestinal epithelial cells: identification of Na, K-ATPase rich membranes and the distribution of enzyme activities. J Membr Biol. 1976 Sep 17;28(4):309–333. doi: 10.1007/BF01869703. [DOI] [PubMed] [Google Scholar]
  6. Sachs G., Shah G., Strych A., Cline G., Hirschowitz B. I. Properties of ATPase of gastric mucosa. 3. Distribution of HCO 3 -stimulated ATPase in gastric mucosa. Biochim Biophys Acta. 1972 Jun 20;266(3):625–638. doi: 10.1016/0006-3002(72)90006-6. [DOI] [PubMed] [Google Scholar]
  7. Simon B., Kinne R., Knauf H. The presence of a HCO 3 ATPase in glandula submandibularis of rabbit. Pflugers Arch. 1972;337(2):177–184. doi: 10.1007/BF00587839. [DOI] [PubMed] [Google Scholar]
  8. Simon B., Thomas L. HCO 3 -stimulated ATPase from mammalian pancreas. Properties and its arrangement with other enzyme activities. Biochim Biophys Acta. 1972 Nov 2;288(2):434–442. doi: 10.1016/0005-2736(72)90264-7. [DOI] [PubMed] [Google Scholar]
  9. Soumarmon A., Lewin M., Cheret A. M., Bonfils S. Gastric HCO3-stimulated ATPase: evidence against its microsomal localization in rat fundus mucosa. Biochim Biophys Acta. 1974 Mar 29;339(3):403–414. doi: 10.1016/0005-2736(74)90167-9. [DOI] [PubMed] [Google Scholar]
  10. Wiebelhaus V. D., Sung C. P., Helander H. F., Shah G., Blum A. L., Sachs G. Solubilization of anion ATPase from necturus oxyntic cells. Biochim Biophys Acta. 1971 Jul 6;241(1):49–56. doi: 10.1016/0005-2736(71)90302-6. [DOI] [PubMed] [Google Scholar]
  11. de Pont J. J., Hansen T., Bonting S. L. An anion-sensitive ATPase in lizard gastric mucosa. Biochim Biophys Acta. 1972 Jul 3;274(1):189–200. doi: 10.1016/0005-2736(72)90293-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES