Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Apr 1;73(1):206–222. doi: 10.1083/jcb.73.1.206

Biochemical characterization of RNA and protein synthesis in erythrocyte development

PMCID: PMC2109903  PMID: 856832

Abstract

Newts (Triturus cristatus) made anemic with acetylphenylhydrazine (APH) fail to regenerate erythrocytes (RBC's) immediately and exhibit a latent period of 1.5-2 wk during which animals lack RBC's and are aplastic. With the establishment of erythroid regeneration at 10-14 days, relatively homogeneous populations of successive erythropoietic stages occur in the blood. This feature makes possible biochemical analyses of events in early, intermediate, and late developmental stages, respectively, each of which can be obtained in vivo with minimal contamination by other stages. Previous studies have described a primitive cell population referred to as "erythroid precursor cells" (EPC's) which precedes the appearance of definitive erythroid elements. The present studies show that EPC's and early erythroid cells are engaged mainly in ribosomal production, including synthesis of rRNA and ribosomal proteins. Moreover, EPC's and early erythroid cells also synthesize tRNA and a presumed Hb-mRNA which has been identified by its sedimentation rate at 9-12 s and its content of polyadenylic acid. In intermediate stages, there occurs a fourfold decrease in the level of RNA synthesis and, while rRNA continues to be formed, there is a disproportionate accumulation of the two major cytoplasmic rRNA species in favor of the large ribosomal subunit RNA. In late developmental stages, the level of RNA synthesis is markedly diminished with little or no evidence of formation of defined RNA classes. Correlated radioautographic and biochemical studies with radioactive delta- aminolevulinic acid and leucine indicate that EPC's and other early erythroid elements synthesize not only hemoglobin but also ferritin and ribosomal proteins. It is concluded that: (a) erythroid RNA synthesis is most pronounced in the early developmental stages, being manifested predominantly by rRNA production but including tRNA and Hb-mRNA; (b) intermediate developmental stages show both "ribosomal wastage" and decreased growth rate, marking a pivotal point between the transcriptional activities of early stages and translational activities of late stages; (c) EPC's represent a cell population already committed to RBC formation and are excluded from a role as the pluripotential stem cell.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burr H., Lingrel J. B. Poly A sequences at the 3' termini of rabbit globin mRNAs. Nat New Biol. 1971 Sep 8;233(36):41–43. doi: 10.1038/newbio233041a0. [DOI] [PubMed] [Google Scholar]
  3. Chui D. H., Djaldetti M., Marks P. A., Rifkind R. A. Erythropoietin effects on fetal mouse erythroid cells. I. Cell population and hemoglobin synthesis. J Cell Biol. 1971 Dec;51(3):585–595. doi: 10.1083/jcb.51.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cooper H. L. Control of synthesis and wastage of ribosomal RNA in lymphocytes. Nature. 1970 Sep 12;227(5263):1105–1107. doi: 10.1038/2271105a0. [DOI] [PubMed] [Google Scholar]
  5. Cooper H. L., Gibson E. M. Control of synthesis and wastage of ribosomal ribonucleic acid in lymphocytes. II. The role of protein synthesis. J Biol Chem. 1971 Aug 25;246(16):5059–5066. [PubMed] [Google Scholar]
  6. Cooper H. L. Ribosomal ribonucleic acid wastage in resting and growing lymphocytes. J Biol Chem. 1969 Oct 25;244(20):5590–5596. [PubMed] [Google Scholar]
  7. Emerson C. P. Regulation of the synthesis and the stability of ribosomal RNA during contact inhibition of growth. Nat New Biol. 1971 Jul 28;232(30):101–106. doi: 10.1038/newbio232101a0. [DOI] [PubMed] [Google Scholar]
  8. Ennis H. L. Synthesis of ribonucleic acid in L cells during inhibition of protein synthesis by cycloheximide. Mol Pharmacol. 1966 Nov;2(6):543–557. [PubMed] [Google Scholar]
  9. GRASSO J. A., WOODARD J. W., SWIFT H. Cytochemical studies of nucleic acids and proteins in erythrocytic development. Proc Natl Acad Sci U S A. 1963 Jul;50:134–140. doi: 10.1073/pnas.50.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grasso J. A., Shephard D. C. Experimental production of totally anaemic newts. Nature. 1968 Jun 29;218(5148):1274–1276. doi: 10.1038/2181274a0. [DOI] [PubMed] [Google Scholar]
  11. Harrison P. R., Conkie D., Affara N., Paul J. In situ localization of globin messenger RNA formation. I. During mouse fetal liver development. J Cell Biol. 1974 Nov;63(2 Pt 1):402–413. doi: 10.1083/jcb.63.2.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holder J. W., Lingrel J. B. The localization of the hemoglobin messenger RNA on the 40-S ribosomal subunit of rabbit reticulocyte polysomes. Biochim Biophys Acta. 1970 Mar 19;204(1):210–220. doi: 10.1016/0005-2787(70)90504-6. [DOI] [PubMed] [Google Scholar]
  13. Kabat D. Potentiation of hemoglobin messenger ribonucleic acid. A step in protein synthesis initiation involving interaction of messenger with 18 S ribosomal ribonucleic acid. J Biol Chem. 1975 Aug 10;250(15):6085–6092. [PubMed] [Google Scholar]
  14. Krystosek A., Cawthon M. L., Kabat D. Improved methods for purification and assay of eukaryotic messenger ribonucleic acids and ribosomes. Quantitative analysis of their interaction in a fractionated reticulocyte cell-free system. J Biol Chem. 1975 Aug 10;250(15):6077–6084. [PubMed] [Google Scholar]
  15. Landesman R., Gross P. R. Patterns of macromolecule synthesis during development of Xenopus laevis. II. Identification of the 40 S precursor to ribosomal RNA. Dev Biol. 1969 Mar;19(3):244–260. doi: 10.1016/0012-1606(69)90063-3. [DOI] [PubMed] [Google Scholar]
  16. Lim L., Canellakis E. S. Adenine-rich polymer associated with rabbit reticulocyte messenger RNA. Nature. 1970 Aug 15;227(5259):710–712. doi: 10.1038/227710a0. [DOI] [PubMed] [Google Scholar]
  17. Lockard R. E., Lingrel J. B. Identification of mouse haemoglobin messenger RNA. Nature. 1971 Oct 13;233(5320):204–206. [PubMed] [Google Scholar]
  18. Loening U. E., Jones K. W., Birnstiel M. L. Properties of the ribosomal RNA precursor in Xenopus laevis; comparison to the precursor in mammals and in plants. J Mol Biol. 1969 Oct 28;45(2):353–366. doi: 10.1016/0022-2836(69)90110-7. [DOI] [PubMed] [Google Scholar]
  19. Maniatis G. M., Rifkind R. A., Bank A., Marks P. A. Early stimulation of RNA synthesis by erythropoietin in cultures of erythroid precursor cells. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3189–3194. doi: 10.1073/pnas.70.11.3189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mansbridge J. N., Crossley J. A., Lanyon W. G., Williamson R. The poly(adenylic acid) sequence of mouse globin messenger RNA. Eur J Biochem. 1974 May 2;44(1):261–269. doi: 10.1111/j.1432-1033.1974.tb03481.x. [DOI] [PubMed] [Google Scholar]
  21. Merkel C. G., Kwan S., Lingrel J. B. Size of the polyadenylic acid region of newly synthesized globin messenger ribonucleic acid. J Biol Chem. 1975 May 25;250(10):3725–3728. [PubMed] [Google Scholar]
  22. Monette F. C., LoBue J., Gordon A. S., Alexander P., Jr, Chan P. C. Erythropoiesis in the rat: differential rates of DNA synthesis and cell proliferation. Science. 1968 Dec 6;162(3858):1132–1134. doi: 10.1126/science.162.3858.1132. [DOI] [PubMed] [Google Scholar]
  23. Morrison M. R., Gorski J., Lingrel J. B. The separation of mouse reticulocyte 9S RNA into fractions of different biological activity by hybridization to poly(U)-cellulose. Biochem Biophys Res Commun. 1972 Nov 1;49(3):775–781. doi: 10.1016/0006-291x(72)90478-0. [DOI] [PubMed] [Google Scholar]
  24. Moss B., Ingram V. M. Hemoglobin synthesis during amphibian metamorphosis. I. Chemical studies on the hemoglobins from the larval and adult stages of Rana catesbeiana. J Mol Biol. 1968 Mar 28;32(3):481–492. doi: 10.1016/0022-2836(68)90336-7. [DOI] [PubMed] [Google Scholar]
  25. Murphy M. J., Jr, Bertles J. F., Gordon A. S. Identifying characteristics of the haematopoietic precursor cell. J Cell Sci. 1971 Jul;9(1):23–47. doi: 10.1242/jcs.9.1.23. [DOI] [PubMed] [Google Scholar]
  26. Pemberton R. E., Baglioni C. Duck hemoglobin messenger RNA contains a polynucleotide sequence rich in adenylic acid. J Mol Biol. 1972 Apr 14;65(3):531–535. doi: 10.1016/0022-2836(72)90207-0. [DOI] [PubMed] [Google Scholar]
  27. Rogers M. E., Klein G. Amphibian ribosomal ribonucleic acids. Biochem J. 1972 Nov;130(1):281–288. doi: 10.1042/bj1300281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stewart A. G., Clissold P. M., Arnstein H. R. The initiation of globin synthesis in differentiating rabbit-bone-marrow erythroid cells. Eur J Biochem. 1976 Jun 1;65(2):349–355. doi: 10.1111/j.1432-1033.1976.tb10348.x. [DOI] [PubMed] [Google Scholar]
  29. Terada M., Cantor L., Metafora S., Rifkind R. A., Bank A., Marks P. A. Globin messenger RNA activity in erythroid precursor cells and the effect of erythropoietin. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3575–3579. doi: 10.1073/pnas.69.12.3575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tooze J., Davies H. G. Light- and electron- microscope studies on the spleen of the newt Triturus cristatus: the fine structure of erythropoietic cells. J Cell Sci. 1967 Dec;2(4):617–640. doi: 10.1242/jcs.2.4.617. [DOI] [PubMed] [Google Scholar]
  31. Warner J. R., Soeiro R., Birnboim H. C., Girard M., Darnell J. E. Rapidly labeled HeLa cell nuclear RNA. I. Identification by zone sedimentation of a heterogeneous fraction separate from ribosomal precursor RNA. J Mol Biol. 1966 Aug;19(2):349–361. doi: 10.1016/s0022-2836(66)80009-8. [DOI] [PubMed] [Google Scholar]
  32. Warner J. R. The assembly of ribosomes in HeLa cells. J Mol Biol. 1966 Aug;19(2):383–398. doi: 10.1016/s0022-2836(66)80012-8. [DOI] [PubMed] [Google Scholar]
  33. Wiegers U., Hilz H. A new method using 'proteinase K' to prevent mRNA degradation during isolation from HeLa cells. Biochem Biophys Res Commun. 1971 Jul 16;44(2):513–519. doi: 10.1016/0006-291x(71)90632-2. [DOI] [PubMed] [Google Scholar]
  34. Willems M., Penman M., Penman S. The regulation of RNA synthesis and processing in the nucleolus during inhibition of protein synthesis. J Cell Biol. 1969 Apr;41(1):177–187. doi: 10.1083/jcb.41.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. van Bekkum D. W., van Noord M. J., Maat B., Dicke K. A. Attempts at identification of hemopoietic stem cell in mouse. Blood. 1971 Nov;38(5):547–558. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES