Abstract
The ribosomes extracted from the mitochondria of the ciliate, Paramecium aurelia, have been shown to sediment at 80S in sucrose gradients. The cytoplasmic ribosomes also sediment at 80S but can be distinguished from their mitochondrial counterparts by a number of criteria. Lowering of the Mg++ concentration, addition of EDTA, or high KCl concentrations results in the dissociation of the cytoplasmic ribosomes into 60S and 40S subunits, whereas the mitochondrial ribosomes dissociate into a single sedimentation class at 55S. Furthermore, the relative sensitivity of the two types of ribosome to dissociating conditions can be distinguished. Electron microscopy of negatively stained 80S particles from both sources has also shown that the two types can be differentiated. The cytoplasmic particles show dimensions of 270 X 220 A whereas the mitochondrial particles are larger (330 X 240 A). In addition, there are several distinctive morphological features. The incorporation of [14C]leucine into nascent polypeptides associated with both mitochondrial and cytoplasmic ribosomes has been shown: the incorporation into cytoplasmic 80S particles is resistant to erythromycin and chloramphenicol but sensitive to cycloheximide, whereas incorporation into the mitochondrial particles is sensitive to erythromycin and chloramphenicol but resistant to cycloheximide.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aaij C., Nanninga N., Borst P. The structure of ribosome-like particles from rat-liver mitochondria. Biochim Biophys Acta. 1972 Aug 16;277(1):140–148. doi: 10.1016/0005-2787(72)90361-9. [DOI] [PubMed] [Google Scholar]
- Adoutte A., Beisson J. Cytoplasmic inheritance of erythromycin resistant mutations in Paramecium aurelia. Mol Gen Genet. 1970;108(1):70–77. doi: 10.1007/BF00343186. [DOI] [PubMed] [Google Scholar]
- Allen N. E., Suyama Y. Protein synthesis in vitro with Tetrahymena mitochondrial ribosomes. Biochim Biophys Acta. 1972 Feb 15;259(3):369–377. doi: 10.1016/0005-2787(72)90311-5. [DOI] [PubMed] [Google Scholar]
- Ashwell M., Work T. S. The biogenesis of mitochondria. Annu Rev Biochem. 1970;39:251–290. doi: 10.1146/annurev.bi.39.070170.001343. [DOI] [PubMed] [Google Scholar]
- Beale G. H. A note on the inheritance of erythromycin-resistance in Paramecium aurelia. Genet Res. 1969 Dec;14(3):341–342. doi: 10.1017/s0016672300002184. [DOI] [PubMed] [Google Scholar]
- Beale G. H., Knowles J. K., Tait A. Mitochondrial genetics in Paramecium. Nature. 1972 Feb 18;235(5338):396–397. doi: 10.1038/235396a0. [DOI] [PubMed] [Google Scholar]
- Borst P. Mitochondrial nucleic acids. Annu Rev Biochem. 1972;41:333–376. doi: 10.1146/annurev.bi.41.070172.002001. [DOI] [PubMed] [Google Scholar]
- Coen D., Deutsch J., Netter P., Petrochilo E., Slonimski P. P. Mitochondrial genetics. I. Methodology and phenomenology. Symp Soc Exp Biol. 1970;24:449–496. [PubMed] [Google Scholar]
- Curgy J. J., Ledoigt G., Stevens B. J., André J. Mitochondrial and cytoplasmic ribosomes from Tetrahymena pyriformis. Correlative analysis by gel electrophoresis and electron microscopy. J Cell Biol. 1974 Mar;60(3):628–640. doi: 10.1083/jcb.60.3.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grivell L. A., Netter P., Borst P., Slonimski P. P. Mitochondrial antibiotic resistance in yeast: ribosomal mutants resistant to chloramphenicol, erythromycin and spiramycin. Biochim Biophys Acta. 1973 Jun 23;312(2):358–367. doi: 10.1016/0005-2787(73)90380-8. [DOI] [PubMed] [Google Scholar]
- Kleinow W., Neupert W., Miller F. Electron microscope study of mitochondrial 60S and cytoplasmic 80S ribosomes from Locusta migratoria. J Cell Biol. 1974 Sep;62(3):860–875. doi: 10.1083/jcb.62.3.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knowles J. K. An improved microinjection technique in Paramecium aurelia. Transfer of mitochondria conferring erythromycin-resistance. Exp Cell Res. 1974 Sep;88(1):79–87. doi: 10.1016/0014-4827(74)90620-x. [DOI] [PubMed] [Google Scholar]
- Leaver C. J., Harmey M. A. Isolation and characterization of mitochondrial ribosomes from higher plants. Biochem J. 1972 Sep;129(3):37P–38P. doi: 10.1042/bj1290037p. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nanninga N. Structural aspects of ribosomes. Int Rev Cytol. 1973;35:135–188. doi: 10.1016/s0074-7696(08)60354-x. [DOI] [PubMed] [Google Scholar]
- ROODYN D. B., REIS P. J., WORK T. S. Protein synthesis in mitochondria. Requirements for the incorporation of radioactive amino acids into mitochondrial protein. Biochem J. 1961 Jul;80:9–21. doi: 10.1042/bj0800009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reisner A. H., Rowe J., Macindoe H. M. Structural studies on the ribosomes of Paramecium: evidence for a "primitive" animal ribosome. J Mol Biol. 1968 Mar 28;32(3):587–610. doi: 10.1016/0022-2836(68)90345-8. [DOI] [PubMed] [Google Scholar]
- Swanson R. F., Dawid I. B. The mitochondrial ribosome of Xenopus laevis. Proc Natl Acad Sci U S A. 1970 May;66(1):117–124. doi: 10.1073/pnas.66.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tait A. Altered mitochondrial ribosomes in an erythromycin resistant mutant of Paramecium. FEBS Lett. 1972 Jul 15;24(1):117–120. doi: 10.1016/0014-5793(72)80840-8. [DOI] [PubMed] [Google Scholar]
- Thomas D. Y., Wilkie D. Inhibition of mitochondrial synthesis in yeast by erythromycin: cytoplasmic and nuclear factors controlling resistance. Genet Res. 1968 Feb;11(1):33–41. doi: 10.1017/s0016672300011174. [DOI] [PubMed] [Google Scholar]
- Vignais P. V., Stevens B. J., Huet J., André J. Mitoribosomes from Candida utilis. Morphological, physical, and chemical characterization of the monomer form and of its subunits. J Cell Biol. 1972 Sep;54(3):468–492. doi: 10.1083/jcb.54.3.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkie D., Saunders G., Linnane A. W. Inhibition of respiratory enzyme synthesis in yeast by chloramphenicol: relationship between chloramphenicol tolerance and resistance to other antibacterial antibiotics. Genet Res. 1967 Oct;10(2):199–203. doi: 10.1017/s0016672300010934. [DOI] [PubMed] [Google Scholar]