Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 May 1;73(2):271–278. doi: 10.1083/jcb.73.2.271

Reversibly contractile nuclear matrix. Its isolation, structure, and composition

PMCID: PMC2109913  PMID: 404299

Abstract

From Tetrahymena macronuclei we have isolated a reversibly contractile nucleo-skeleton, i.e., an "expanded" nuclear matrix which reversibly contracts when the total concentration of the bivalent cations, Ca and Mg (3:2), is decreased to 5 mM or increased to 125 mM. During contraction the average diameter of the expanded matrix becomes reduced by about 24%; this corresponds to a volume contraction of about 55%. The reversible contraction of the nuclear matrix does not depend on ATP and cannot be inhibited by salygran. The expanded matrix is obtained by removing carefully from the macronuclei 89.7% of the phospholipid, 99.6% of the DNA, 98.5% of the RNA, and 74.8% of the protein by treatment with Triton X-100 and digestion with DNase and RNase followed by an extraction with 2 M NaCl. Electron microscopy reveals, within the expanded matrix, residual equivalents to the structures characteristic for macronuclei: (a) a residual nuclear envelope with nuclear pore complexes; (b) residual nucleoli at the periphery; (c) a fibrillar internal network. The expanded matrix is essentially composed of proteins (96.2%) and traces of DNA (0.8%), RNA (0.5%), phospholipid (1.6%), and carbohydrates (0.9%). The last, which have been determined by gas chromatography, contain glucose, mannose, and an unidentified sugar in the ratio 1:5.4:5.7. The ratio of acidic to basic amino acids of the expanded matrix is 1.55. Sodium dodecyl sulfate (SDS) gel electrophoresis reveals a predominant protein with a mol wt of 18,000 which is apparently involved in the reversible contractile process. The mechanism of this reversible contraction of the expanded matrix remains to be elucidated, but it differs both from actin-myosin contraction systems and from the contractile spasmoneme system in vorticellids.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaronson R. P., Blobel G. Isolation of nuclear pore complexes in association with a lamina. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1007–1011. doi: 10.1073/pnas.72.3.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amos W. B. Contraction and calcium binding in the vorticellid ciliates. Soc Gen Physiol Ser. 1975;30:411–436. [PubMed] [Google Scholar]
  3. Arnold E. A., Yawn D. H., Brown D. G., Wyllie R. C., Coffey D. S. Structural alteration in isolated rat liver nuclei after removal of template restriction by polyanions. J Cell Biol. 1972 Jun;53(3):737–757. doi: 10.1083/jcb.53.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berezney R., Coffey D. S. The nuclear protein matrix: isolation, structure, and functions. Adv Enzyme Regul. 1976;14:63–100. doi: 10.1016/0065-2571(76)90008-x. [DOI] [PubMed] [Google Scholar]
  6. Bernhard W. A new staining procedure for electron microscopical cytology. J Ultrastruct Res. 1969 May;27(3):250–265. doi: 10.1016/s0022-5320(69)80016-x. [DOI] [PubMed] [Google Scholar]
  7. Douvas A. S., Harrington C. A., Bonner J. Major nonhistone proteins of rat liver chromatin: preliminary identification of myosin, actin, tubulin, and tropomyosin. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3902–3906. doi: 10.1073/pnas.72.10.3902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  9. GERLACH E., DEUTICKE B. EINE EINFACHE METHODE ZUR MIKROBESTIMMUNG VON PHOSPHAT IN DER PAPIERCHROMATOGRAPHIE. Biochem Z. 1963 Jul 26;337:477–479. [PubMed] [Google Scholar]
  10. Guttes E., Guttes S. Initiation of mitosis in interphase plasmodia of Physarum polycephalum by coalescence with premitotic plasmodia. Experientia. 1969 Nov 15;25(11):1168–1170. doi: 10.1007/BF01900254. [DOI] [PubMed] [Google Scholar]
  11. Kickhöfen B., Hammer D. K., Scheel D. Isolation and characterisation of gammaG type immunoglobulins from bovine serum and colostrum. Hoppe Seylers Z Physiol Chem. 1968 Dec;349(12):1755–1773. doi: 10.1515/bchm2.1968.349.2.1755. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. OGUR M., ROSEN G. The nucleic acids of plant tissues; the extraction and estimation of desoxypentose nucleic acid and pentose nucleic acid. Arch Biochem. 1950 Feb;25(2):262–276. [PubMed] [Google Scholar]
  15. Riley D. E., Keller J. M., Byers B. The isolation and characterization of nuclear ghosts from cultured HeLa cells. Biochemistry. 1975 Jul;14(13):3005–3013. doi: 10.1021/bi00684a033. [DOI] [PubMed] [Google Scholar]
  16. Ronai A., Wunderlich F. Membranes of Tetrahymena. IV. Isolation and characterization of temperature-responsive smooth and rough microsomal subfractions. J Membr Biol. 1975 Dec 4;24(3-4):381–399. doi: 10.1007/BF01868633. [DOI] [PubMed] [Google Scholar]
  17. Siebert G., Langendorf H. Ionenhaushalt im Zellkern. Naturwissenschaften. 1970 Mar;57(3):119–124. doi: 10.1007/BF00600046. [DOI] [PubMed] [Google Scholar]
  18. Spencer R. L., Wold F. A new convenient method for estimation of total cystine-cysteine in proteins. Anal Biochem. 1969 Oct 15;32(1):185–190. doi: 10.1016/0003-2697(69)90123-7. [DOI] [PubMed] [Google Scholar]
  19. Szent-Györgyi A. G. Calcium regulation of muscle contraction. Biophys J. 1975 Jul;15(7):707–723. doi: 10.1016/S0006-3495(75)85849-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tandler C. J., Kierszenbaum A. L. Inorganic cations in rat kidney. Localization with potassium pyroantimonate--perfusion fixation. J Cell Biol. 1971 Sep;50(3):830–839. doi: 10.1083/jcb.50.3.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tres L. L., Kierszenbaum A. L., Tandler C. J. Inorganic cations in the cell nucleus. Selective accumulation during meiotic prophase in mouse testis. J Cell Biol. 1972 May;53(2):483–493. doi: 10.1083/jcb.53.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weckesser J., Drews G., Fromme I. Chemical analysis of and degradation studies on the cell wall lipopolysaccharide of Rhodopseudomonas capsulata. J Bacteriol. 1972 Mar;109(3):1106–1113. doi: 10.1128/jb.109.3.1106-1113.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES