Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 May 1;73(2):300–310. doi: 10.1083/jcb.73.2.300

Submitochondrial localization and function of enzymes of glutamine metabolism in avian liver

PMCID: PMC2109915  PMID: 16018

Abstract

Glutamine synthetase (EC 6.3.1.2) was localized within the matrix compartment of avian liver mitochondria. The submitochondrial localization of this enzyme was determined by the digitonin-Lubrol method of Schnaitman and Greenawalt (35). The matrix fraction contained over 74% of the glutamine synthetase activity and the major proportion of the matirx marker enzymes, malate dehydrogenase (71%), NADP- dependent isocitrate dehydrogenase (83%), and glutamate dehydrogenase (57%). The highest specific activities of these enzymes were also found in the matrix compartment. Oxidation of glutamine by avian liver mitochondria was substantially less than that of glutamate. Bromofuroate, an inhibitor of glutamate dehydrogenase, blocked oxidation of glutamate and of glutamine whereas aminoxyacetate, a transaminase inhibitor, had little or no effect with either substrate. These results indicate that glutamine metabolism is probably initiated by the conversion of glutamine to glutamate rather than to an alpha- keto acid. The localization of a glutaminase activity within avian liver mitochondria plus the absence of an active mitochondrial glutamine transaminase is consistent with the differential effects of the transaminase and glutamate dehydrogenase inhibitors. The high glutamine synthetase activity (40:1) suggests that mitochondrial catabolism of glutamine is minimal, freeing most of the glutamine synthesized for purine (uric acid) biosynthesis.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackburn E. H., Hird F. J. Metabolism of glutamine and glutamate by rat liver mitochondria. Arch Biochem Biophys. 1972 Sep;152(1):258–264. doi: 10.1016/0003-9861(72)90213-5. [DOI] [PubMed] [Google Scholar]
  2. CAUGHEY W. S., HELLERMAN L., SMILEY J. D. L-glutamic acid dehydrogenase; structural requirements for substrate competition; effect of thyroxine. J Biol Chem. 1957 Jan;224(1):591–607. [PubMed] [Google Scholar]
  3. Campbell J. W., Vorhaben J. E. Avian mitochondrial glutamine metabolism. J Biol Chem. 1976 Feb 10;251(3):781–786. [PubMed] [Google Scholar]
  4. Christ W., Rakow D., Fernandes M., Magour S. A simple and sensitive spectrophotometric determination of monoamine oxidase activity. Z Klin Chem Klin Biochem. 1973 Sep;11(9):367–370. doi: 10.1515/cclm.1973.11.9.367. [DOI] [PubMed] [Google Scholar]
  5. Clarke S. A major polypeptide component of rat liver mitochondria: carbamyl phosphate synthetase. J Biol Chem. 1976 Feb 25;251(4):950–961. [PubMed] [Google Scholar]
  6. Clinkenbeard K. D., Reed W. D., Mooney R. A., Lane M. D. Intracellular localization of the 3-hydroxy-3-methylglutaryl coenzme A cycle enzymes in liver. Separate cytoplasmic and mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A generating systems for cholesterogenesis and ketogenesis. J Biol Chem. 1975 Apr 25;250(8):3108–3116. [PubMed] [Google Scholar]
  7. Cooper A. J., Meister A. Isolation and properties of a new glutamine transaminase from rat kidney. J Biol Chem. 1974 Apr 25;249(8):2554–2561. [PubMed] [Google Scholar]
  8. Cooper J. L., Meister A. Isolation and properties of highly purified glutamine transaminase. Biochemistry. 1972 Feb 29;11(5):661–671. doi: 10.1021/bi00755a001. [DOI] [PubMed] [Google Scholar]
  9. Curthoys N. P., Kuhlenschmidt T. Phosphate-independent glutaminase from rat kidney. Partial purification and identity with gamma-glutamyltranspeptidase. J Biol Chem. 1975 Mar 25;250(6):2099–2105. [PubMed] [Google Scholar]
  10. Curthoys N. P., Weiss R. F. Regulation of renal ammoniagenesis. Subcellular localization of rat kidney glutaminase isoenzymes. J Biol Chem. 1974 May 25;249(10):3261–3266. [PubMed] [Google Scholar]
  11. GUHA S. R. Intracellular localization of glutaminase I in rat liver. Enzymologia. 1961 May 15;23:94–100. [PubMed] [Google Scholar]
  12. Gamble J. G., Lehninger A. L. Transport of ornithine and citrulline across the mitochondrial membrane. J Biol Chem. 1973 Jan 25;248(2):610–618. [PubMed] [Google Scholar]
  13. Goldstein L. Regulation of renal glutamine deamination. Med Clin North Am. 1975 May;59(3):667–680. doi: 10.1016/s0025-7125(16)32016-8. [DOI] [PubMed] [Google Scholar]
  14. Greenawalt J. W. The isolation of outer and inner mitochondrial membranes. Methods Enzymol. 1974;31:310–323. doi: 10.1016/0076-6879(74)31033-6. [DOI] [PubMed] [Google Scholar]
  15. HOPPER S., SEGAL H. L. Kinetic studies of rat liver glutamicalanine transaminase. J Biol Chem. 1962 Oct;237:3189–3195. [PubMed] [Google Scholar]
  16. Hird F. J., Marginson M. A. The formation of ammonia from glutamine and glutamate by mitochondria from rat liver and kidney. Arch Biochem Biophys. 1968 Sep 20;127(1):718–724. doi: 10.1016/0003-9861(68)90282-8. [DOI] [PubMed] [Google Scholar]
  17. Hsieh W. C., Anderson R. E. Quantitation of stained proteins in SDS polyacrylamide gels with lysozyme as internal standard. Anal Biochem. 1975 Dec;69(2):331–338. doi: 10.1016/0003-2697(75)90135-9. [DOI] [PubMed] [Google Scholar]
  18. Kalra J., Brosnan J. T. The subcellular localization of glutaminase isoenzymes in rat kidney cortex. J Biol Chem. 1974 May 25;249(10):3255–3260. [PubMed] [Google Scholar]
  19. Katunuma N., Matsuda Y., Kuroda Y. Phylogenic aspects of different regulatory mechanisms of glutamine metabolism. Adv Enzyme Regul. 1970;8:73–81. doi: 10.1016/0065-2571(70)90009-9. [DOI] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. MEISTER A. Preparation of enzymatic reactions of the keto analogues of asparagine and glutamine. J Biol Chem. 1953 Feb;200(2):571–589. [PubMed] [Google Scholar]
  22. OLSON J. A., ANFINSEN C. B. Kinetic and equilibrium studies on crystalline 1-glutamic acid dehydrogenase. J Biol Chem. 1953 Jun;202(2):841–856. [PubMed] [Google Scholar]
  23. PAMILJANS V., KRISHNASWAMY P. R., DUMVILLE G., MEISTER A. Studies on the mechanism of glutamine synthesis; isolation and properties of the enzyme from sheep brain. Biochemistry. 1962 Jan;1:153–158. doi: 10.1021/bi00907a023. [DOI] [PubMed] [Google Scholar]
  24. Schnaitman C., Greenawalt J. W. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol. 1968 Jul;38(1):158–175. doi: 10.1083/jcb.38.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tate S. S., Meister A. Identity of maleate-stimulated glutaminase with gamma-glutamyl transpeptidase in rat kidney. J Biol Chem. 1975 Jun 25;250(12):4619–4627. [PubMed] [Google Scholar]
  27. Vorhaben J. E., Campbell J. W. Glutamine synthetase. A mitochondrial enzyme in uricotelic species. J Biol Chem. 1972 May 10;247(9):2763–2767. [PubMed] [Google Scholar]
  28. Vorhaben J. E., Wong L., Campbell J. W. Assay for glutamine synthetase activity. Biochem J. 1973 Dec;135(4):893–896. doi: 10.1042/bj1350893. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES