Abstract
Chicken heart muscle contains almost exclusively the BB isoenzyme of creatine kinase (CK), its myofibrils, moreover, lack an M-line. This tissue thus provides an interesting contrast to skeletal muscle, in which some of the MM-CK present as predominant CK isoenzyme is bound at the myofibrillar M-line. Approx. 2% of the total CK activity in a chicken heart homogenate remains bound to the myofibrillar fraction after repeated washing cycles; both the fraction and the absolute amount of CK bound are about threefold lower than in skeletal muscle. Almost all of the bound enzyme is located within the Z-line region of each sarcomere, as revealed by indirect fluorescent-antibody staining with antiserum against purified chicken BB-CK. After incubation with exogenous purified MM-CK, positive immunofluorescent staining for M- type CK at the H-region of heart myofibrils was observed, along with weaker fluorescence in the Z-line region. Chicken heart myofibrils may thus possess binding sites for both M and B forms of CK.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnold H., Nolte J., Pette D. Quantitative and histochemical studies on the desorption and readsorption of aldolase in cross-striated muscle. J Histochem Cytochem. 1969 May;17(5):314–320. doi: 10.1177/17.5.314. [DOI] [PubMed] [Google Scholar]
- Arnold H., Pette D. Binding of aldolase and triosephosphate dehydrogenase to F-actin and modification of catalytic properties of aldolase. Eur J Biochem. 1970 Aug;15(2):360–366. doi: 10.1111/j.1432-1033.1970.tb01016.x. [DOI] [PubMed] [Google Scholar]
- Etlinger J. D., Zak R., Fischman D. A. Compositional studies of myofibrils from rabbit striated muscle. J Cell Biol. 1976 Jan;68(1):123–141. doi: 10.1083/jcb.68.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobus W. E., Lehninger A. L. Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport. J Biol Chem. 1973 Jul 10;248(13):4803–4810. [PubMed] [Google Scholar]
- KNAPPEIS G. G., CARLSEN F. The ultrastructure of the Z disc in skeletal muscle. J Cell Biol. 1962 May;13:323–335. doi: 10.1083/jcb.13.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly D. E. Models of muscle Z-band fine structure based on a looping filament configuration. J Cell Biol. 1967 Sep;34(3):827–840. doi: 10.1083/jcb.34.3.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pepe F. A. Structure of muscle filaments from immunohistochemical and ultrastructural studies. J Histochem Cytochem. 1975 Jul;23(7):543–562. doi: 10.1177/23.7.1095653. [DOI] [PubMed] [Google Scholar]
- Reddy M. K., Etlinger J. D., Rabinowitz M., Fischman D. A., Zak R. Removal of Z-lines and alpha-actinin from isolated myofibrils by a calcium-activated neutral protease. J Biol Chem. 1975 Jun 10;250(11):4278–4284. [PubMed] [Google Scholar]
- Rowe R. W. The ultrastructure of Z disks from white, intermediate, and red fibers of mammalian striated muscles. J Cell Biol. 1973 May;57(2):261–277. doi: 10.1083/jcb.57.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott T. M. The ultrastructure of ordinary and Purkinje cells of the fowl heart. J Anat. 1971 Nov;110(Pt 2):259–273. [PMC free article] [PubMed] [Google Scholar]
- Sommer J. R., Johnson E. A. Cardiac muscle. A comparative ultrastructural study with special reference to frog and chicken hearts. Z Zellforsch Mikrosk Anat. 1969;98(3):437–468. [PubMed] [Google Scholar]