Abstract
Here we describe the change in thick filament length in striated muscle of Limulus, the horseshoe crab. Long thick filaments (4.0 microns) are isolated from living, unstimulated Limulus striated muscle while those isolated from either electrically or K+-stimulated fibers are significantly shorter (3.1 microns) (P less than 0.001). Filaments isolated from muscle glycerinated at long sarcomere lengths are long (4.4 microns) while those isolated from muscle glycerinated at short sarcomere lengths are short (2.9 microns) and the difference is significant (P less than 0.001). Thin filaments are 2.4 microns in length. The shortening of thick filaments is related to the wide range of sarcomere lengths exhibited by Limulus telson striated muscle.
Full Text
The Full Text of this article is available as a PDF (2.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- DE VILLAFRANCA G. W., SCHEINBLUM T. S., PHILPOTT D. E. A study on the localization of contractile proteins in the muscle of the horseshoe crab (Limulus polyphemus). Biochim Biophys Acta. 1959 Jul;34:147–157. doi: 10.1016/0006-3002(59)90242-2. [DOI] [PubMed] [Google Scholar]
- DE VILLAFRANCA G. W. The A and IB and lengths in stretched or contracted horseshoe crab skeletal muscle. J Ultrastruct Res. 1961 Apr;5:109–115. doi: 10.1016/s0022-5320(61)90008-9. [DOI] [PubMed] [Google Scholar]
- DEVILLAFRANCA G. W., MARSCHHAUS C. E. CONTRACTION OF THE A BAND. J Ultrastruct Res. 1963 Aug;49:156–165. doi: 10.1016/s0022-5320(63)80043-x. [DOI] [PubMed] [Google Scholar]
- De Villafranca G. W., Haines V. E. Paramyosin from arthropod cross-striated muscle. Comp Biochem Physiol B. 1974 Jan 15;47(1):9–26. doi: 10.1016/0305-0491(74)90086-8. [DOI] [PubMed] [Google Scholar]
- HUXLEY A. F., NIEDERGERKE R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. 1954 May 22;173(4412):971–973. doi: 10.1038/173971a0. [DOI] [PubMed] [Google Scholar]
- HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
- Levine R. J., Dewey M. M., De Villafranca G. W. Immunohistochemical localization of contractile proteins in limulus striated muscle. J Cell Biol. 1972 Oct;55(1):221–235. doi: 10.1083/jcb.55.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morimoto K., Harrington W. F. Evidence for structural changes in vertebrate thick filaments induced by calcium. J Mol Biol. 1974 Sep 25;88(3):693–709. doi: 10.1016/0022-2836(74)90417-3. [DOI] [PubMed] [Google Scholar]
- Palmer L. G., Gulati J. Potassium accumulation in muscle: a test of the binding hypothesis. Science. 1976 Oct 29;194(4264):521–523. doi: 10.1126/science.1085986. [DOI] [PubMed] [Google Scholar]
- Sobieszek A. The fine structure of the contractile apparatus of the anterior byssus retractor muscle of Mytilus edulis. J Ultrastruct Res. 1973 May;43(3):313–343. doi: 10.1016/s0022-5320(73)80041-3. [DOI] [PubMed] [Google Scholar]
- Wray J. S., Vibert P. J., Cohen C. Cross-bridge arrangements in Limulus muscle. J Mol Biol. 1974 Sep 15;88(2):343–348. doi: 10.1016/0022-2836(74)90486-0. [DOI] [PubMed] [Google Scholar]