Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Nov 1;75(2):573–585. doi: 10.1083/jcb.75.2.573

Morphometry of the renal corpuscle during normal postnatal growth and compensatory hypertrophy. A light microscope study

PMCID: PMC2109942  PMID: 264124

Abstract

Renal corpuscles from the juxtamedullary and subcapsular regions of the renal cortex were morphometrically analyzed in young rats and in adult rats that had been unilaterally nephrectomized or sham-operated at an early age. Mean corpuscular volumes increased 4.5-fold during normal development, and 7.7-fold as a result of compensatory hypertrophy in both cortical regions. Relative and absolute volumes were determined for Bowman's space, the glomerular tuft, and five glomerular components: epithelial, endothelial, and mesangial cells, capillaries, and the filtration membrane. Normal and hypertrophic enlargement of Bowman's space was slightly greater than glomerular growth, and the growth response of subcapsular glomeruli was greater than that of juxtamedullary glomeruli. The ratio of mean glomerular volumes between outer and inner glomeruli was 1:2 in both adult groups. Both adult groups also developed nearly identical proportions of all glomerular component structures, representing a relative decrease of epithelial cells and increase of capillaries compared to the young animals. Normal and hypertrophic maturation involved absolute increases in all glomerular cell populations, the length of capillary loops and the surface area of the filtration membrane, all nearly in proportion to the respective four- and seven-fold increases in glomerular volume. Changes in the filtration surface area are consistent with published data for glomerular filtration rates in normal and hypertrophied kidneys. The mean cell size in epithelial and mesangial populations doubled during growth, but was not greater than normal in mononephrectomized rats. Hyperplasia among all populations of glomerular cells is indicated in normal growth, and to a greater extent in compensatory renal hypertrophy.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anversa P., Giacomelli F., Wiener J. Regional variation in capillary permeability of ventricular myocardium. Microvasc Res. 1973 Nov;6(3):273–285. doi: 10.1016/0026-2862(73)90076-9. [DOI] [PubMed] [Google Scholar]
  2. Bradley S. E., Chien K. C., Coelho J. B., Mason R. C. Effect of uninephrectomy on glomerulotubular functional-structural balance in the dog. Kidney Int. 1974 Feb;5(2):122–130. doi: 10.1038/ki.1974.16. [DOI] [PubMed] [Google Scholar]
  3. Brenner B. M., Troy J. L., Daugharty T. M., Deen W. M., Robertson C. R. Dynamics of glomerular ultrafiltration in the rat. II. Plasma-flow dependence of GFR. Am J Physiol. 1972 Nov;223(5):1184–1190. doi: 10.1152/ajplegacy.1972.223.5.1184. [DOI] [PubMed] [Google Scholar]
  4. Dewey G. C., Elias H., Appel K. R. Stereology of the renal corpuscles of desert and swamp deermice. Nephron. 1966;3(6):352–365. doi: 10.1159/000179552. [DOI] [PubMed] [Google Scholar]
  5. Dicker S. E., Shirley D. G. Compensatory renal growth after unilateral nephrectomy in the new-born rat. J Physiol. 1973 Jan;228(1):193–202. doi: 10.1113/jphysiol.1973.sp010081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. ELIAS H., HENNIG A., ELIAS P. M. Some methods for the study of kidney structure. Z Wiss Mikrosk. 1961 Dec;65:70–82. [PubMed] [Google Scholar]
  7. Horster M., Valtin H. ostnatal development of renal function: micropuncture and clearance studies in the dog. J Clin Invest. 1971 Apr;50(4):779–795. doi: 10.1172/JCI106549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Iidaka K., McCoy J., Kimmelsteil P. The glomerular mesangium. A quantitative analysis. Lab Invest. 1968 Dec;19(6):573–579. [PubMed] [Google Scholar]
  9. Imbert M. J., Berjal G., Moss N., de Rouffignac C., Bonvalet J. P. Number of nephrons in hypertrophic kidneys after unilateral nephrectomy in young and adult rats. A functional study. Pflugers Arch. 1974;346(4):279–290. doi: 10.1007/BF00596183. [DOI] [PubMed] [Google Scholar]
  10. Jamison R. L. Intrarenal heterogeneity. The case for two functionally dissimilar populations of nephrons in the mammalian kidney. Am J Med. 1973 Mar;54(3):281–289. doi: 10.1016/0002-9343(73)90022-3. [DOI] [PubMed] [Google Scholar]
  11. Johnson H. A., Vera Roman J. M. Compensatory renal enlargement. Hypertrophy versus hyperplasia. Am J Pathol. 1966 Jul;49(1):1–13. [PMC free article] [PubMed] [Google Scholar]
  12. Katz A. I. Renal function immediately after contralateral nephrectomy: relation to the mechanism of compensatory kidney growth. Yale J Biol Med. 1970 Dec;43(3):164–172. [PMC free article] [PubMed] [Google Scholar]
  13. Kawano K., Arakawa M., McCoy J., Porch J., Kimmelstiel P. Quantitative study of glomeruli. Focal glomerulonephritis and diabetic glomerulosclerosis. Lab Invest. 1969 Sep;21(3):269–275. [PubMed] [Google Scholar]
  14. Kawano K., Wenzl J., McCoy J., Porch J., Kimmelstiel P. Lipoid nephrosis. A multifold blind study, including quantitation. Lab Invest. 1971 Jun;24(6):499–503. [PubMed] [Google Scholar]
  15. Kurnick N. B., Lindsay P. A. Nucleic acids in compensatory renal hypertrophy. Lab Invest. 1968 Jun;18(6):700–708. [PubMed] [Google Scholar]
  16. Loud A. V. A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J Cell Biol. 1968 Apr;37(1):27–46. doi: 10.1083/jcb.37.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Olbing H., Blaufox M. D., Aschinberg L. C., Silkalns G. I., Bernstein J., Spitzer A., Edelmann C. M., Jr Postnatal changes in renal glomerular blood flow distribution in puppies. J Clin Invest. 1973 Nov;52(11):2885–2895. doi: 10.1172/JCI107485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pinto J. A., Brewer D. B. Glomerular morphometry. I. Combined light and electron microscope studies in normal rats. Lab Invest. 1974 May;30(5):657–663. [PubMed] [Google Scholar]
  19. Potter D. E., Leumann E. P., Sakai T., Holliday M. A. Early responses of glomerular filtration rate to unilateral nephrectomy. Kidney Int. 1974 Feb;5(2):131–136. doi: 10.1038/ki.1974.17. [DOI] [PubMed] [Google Scholar]
  20. Saphir O. The State of The Glomerulus in Experimental Hypertrophy of the Kidneys of Rabbits. Am J Pathol. 1927 Jul;3(4):329–342.1. [PMC free article] [PubMed] [Google Scholar]
  21. Spitzer A., Brandis M. Functional and morphologic maturation of the superficial nephrons. Relationship to total kidney function. J Clin Invest. 1974 Jan;53(1):279–287. doi: 10.1172/JCI107548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Threlfall G., Taylor D. M., Buck A. T. Studies of the changes in growth and DNA synthesis in the rat kidney during experimentally induced renal hypertrophy. Am J Pathol. 1967 Jan;50(1):1–14. [PMC free article] [PubMed] [Google Scholar]
  23. Toback F. G., Mayers A. M., Lowenstein L. M. Alterations in renal and plasma amino acid concentrations during renal compensatory growth. Am J Physiol. 1973 Nov;225(5):1247–1251. doi: 10.1152/ajplegacy.1973.225.5.1247. [DOI] [PubMed] [Google Scholar]
  24. Weibel E. R. Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol. 1969;26:235–302. doi: 10.1016/s0074-7696(08)61637-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES