Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Nov 1;75(2):410–421. doi: 10.1083/jcb.75.2.410

Isolation and characterization of the vitelline layer of sea urchin eggs

PMCID: PMC2109943  PMID: 264118

Abstract

The vitelline layers (VLs) of unfertilized sea urchin eggs were isolated by homogenization in a hypotonic medium containing Triton X- 100 and EDTA. The surface topography of the VL is not changed by isolation. The thickness of the isolated VLs (300-400 A) is greater than that reported for VLs on intact eggs (100-200 A). Sperm adhere to the isolated VLs. When both internal and external VL surfaces are accessible to sperm, the sperm attach only to the external surface, suggesting that the external surface may carry sperm receptor proteins not present on the internal surface. Sodium dodecyl sulfate (SDS)- polyacrylamide gel electrophoresis shows that isolated VLs are composed of numerous proteins ranging from greater than 213,000 to 25,000 daltons. Lactoperoxidase-catalyzed 125I-iodination of unfertilized eggs labels two high molecular weight bands that stain faintly for carbohydrate. VLs are 90% protein and 3.5% carbohydrate. No predominance of a single amino acid or class of amino acids was found. Carbohydrate analysis yields fucose, mannose, galactose, glucose, xylose, glucosamine, galactosamine, and sialic acid. Controls for purity indicate that isolated VLs contain 2% protein of cytoplasmic origin and no more than 2.5% egg jelly.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aketa K., Tsuzuki H., Onitake K. Characterization of the sperm-binding protein from sea urchin egg surface. Exp Cell Res. 1968 Jun;50(3):676–679. doi: 10.1016/0014-4827(68)90436-9. [DOI] [PubMed] [Google Scholar]
  2. Bryan J. The isolation of a major structural element of the sea urchin fertilization membrane. J Cell Biol. 1970 Mar;44(3):635–645. doi: 10.1083/jcb.44.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carroll E. J., Jr, Epel D. Isolation and biological activity of the proteases released by sea urchin eggs following fertilization. Dev Biol. 1975 May;44(1):22–32. doi: 10.1016/0012-1606(75)90373-5. [DOI] [PubMed] [Google Scholar]
  4. Epel D. Methods for removal of the vitelline membrane of sea urchin eggs. II. Controlled exposure to trypsin to eliminate post-fertilization clumping of embryos. Exp Cell Res. 1970 Jul;61(1):69–70. doi: 10.1016/0014-4827(70)90258-2. [DOI] [PubMed] [Google Scholar]
  5. Epel D., Weaver A. M., Mazia D. Methods for revoval of the vitelline membrane of sea urchin eggs. I. Use of dithiothreitol (Cleland Reagent). Exp Cell Res. 1970 Jul;61(1):64–68. doi: 10.1016/0014-4827(70)90257-0. [DOI] [PubMed] [Google Scholar]
  6. Fodor E. J., Ako H., Walsh K. A. Isolation of a protease from sea urchin eggs before and after fertilization. Biochemistry. 1975 Nov 4;14(22):4923–4927. doi: 10.1021/bi00693a022. [DOI] [PubMed] [Google Scholar]
  7. Glabe C. G., Vacquier V. D. Species specific agglutination of eggs by bindin isolated from sea urchin sperm. Nature. 1977 Jun 30;267(5614):836–838. doi: 10.1038/267836a0. [DOI] [PubMed] [Google Scholar]
  8. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  9. Haino K., Kigawa M. Studies on the egg-membrane lysin of Tegula pfeifferi: isolation and chemical analysis of the egg membrane. Exp Cell Res. 1966 Jun;42(3):625–633. doi: 10.1016/0014-4827(66)90274-6. [DOI] [PubMed] [Google Scholar]
  10. Heller E., Raftery M. A. The vitelline envelope of eggs from the giant keyhole limpet Megathura crenulata. I. Chemical composition and structural studies. Biochemistry. 1976 Mar 23;15(6):1194–1198. doi: 10.1021/bi00651a002. [DOI] [PubMed] [Google Scholar]
  11. Johnson J. D., Epel D. Relationship between release of surface proteins and metabolic activation of sea urchin eggs at fertilization. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4474–4478. doi: 10.1073/pnas.72.11.4474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kane R. E. Hyalin release during normal sea urchin development and its replacement after removal at fertilization. Exp Cell Res. 1973 Oct;81(2):301–311. doi: 10.1016/0014-4827(73)90519-3. [DOI] [PubMed] [Google Scholar]
  13. Kim J. H., Shome B., Liao T. H., Pierce J. G. Analysis of neutral sugars by gas-liquid chromatography of alditol acetates: application to thyrotropic hormone and other glycoproteins. Anal Biochem. 1967 Aug;20(2):258–274. doi: 10.1016/0003-2697(67)90031-0. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Longo F. J., Anderson E. The fine structure of pronuclear development and fusion in the sea urchin, Arbacia punctulata. J Cell Biol. 1968 Nov;39(2):339–368. doi: 10.1083/jcb.39.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SAKAI H. Studies on sulfhydryl groups during cell division of sea urchin egg. II. Mass isolation of the egg cortex and change in its--SH groups during cell division. J Biophys Biochem Cytol. 1960 Dec;8:603–607. doi: 10.1083/jcb.8.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schmell E., Earles B. J., Breaux C., Lennarz W. J. Identification of a sperm receptor on the surface of the eggs of the sea urchin Arbacia punctulata. J Cell Biol. 1977 Jan;72(1):35–46. doi: 10.1083/jcb.72.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shapiro B. M. Limited proteolysis of some egg surface components is an early event following fertilization of the sea urchin, Strongylocentrotus purpuratus. Dev Biol. 1975 Sep;46(1):88–102. doi: 10.1016/0012-1606(75)90089-5. [DOI] [PubMed] [Google Scholar]
  20. Summers R. G., Hylander B. L. Species-specificity of acrosome reaction and primary gamete binding in echinoids. Exp Cell Res. 1975 Nov;96(1):63–68. doi: 10.1016/s0014-4827(75)80037-1. [DOI] [PubMed] [Google Scholar]
  21. Tegner M. J., Epel D. Scanning electron microscope studies of sea urchin fertilization. I. Eggs with vitelline layers. J Exp Zool. 1976 Jul;197(1):31–57. doi: 10.1002/jez.1401970105. [DOI] [PubMed] [Google Scholar]
  22. Tegner M. J., Epel D. Sea urchin sperm-egg interactions studied with the scanning electron microscope. Science. 1973 Feb 16;179(4074):685–688. doi: 10.1126/science.179.4074.685. [DOI] [PubMed] [Google Scholar]
  23. Terho T. T., Hartiala K. Method for determination of the sulfate content of glycosaminoglycans. Anal Biochem. 1971 Jun;41(2):471–476. doi: 10.1016/0003-2697(71)90167-9. [DOI] [PubMed] [Google Scholar]
  24. Vacquier V. D., Moy G. W. Isolation of bindin: the protein responsible for adhesion of sperm to sea urchin eggs. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2456–2460. doi: 10.1073/pnas.74.6.2456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vacquier V. D. The isolation and preliminary analysis of the hyaline layer of sea urchin eggs. Exp Cell Res. 1969 Jan;54(1):140–142. doi: 10.1016/0014-4827(69)90307-3. [DOI] [PubMed] [Google Scholar]
  26. Vacquier V. D. The isolation of intact cortical granules from sea urchin eggs: calcium lons trigger granule discharge. Dev Biol. 1975 Mar;43(1):62–74. doi: 10.1016/0012-1606(75)90131-1. [DOI] [PubMed] [Google Scholar]
  27. Weber K., Pringle J. R., Osborn M. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol. 1972;26:3–27. doi: 10.1016/s0076-6879(72)26003-7. [DOI] [PubMed] [Google Scholar]
  28. Wolf D. P., Nishihara T., West D. M., Wyrick R. E., Hedrick J. L. Isolation, physicochemical properties, and the macromolecular composition of the vitelline and fertilization envelopes from Xenopus laevis eggs. Biochemistry. 1976 Aug 24;15(17):3671–3678. doi: 10.1021/bi00662a005. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES