Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Nov 1;75(2):339–343. doi: 10.1083/jcb.75.2.339

Actin filaments in sensory hairs of inner ear receptor cells

PMCID: PMC2109950  PMID: 318131

Abstract

Receptor cells in the ear are excited through the bending of sensory hairs which project in a bundle from their surface. The individual stereocilia of a bundle contain filaments about 5 nm in diameter. The identity of these filaments has been investigated in the crista ampullaris of the frog and guinea pig by a technique of decoration with subfragment-1 of myosin (S-1). After demembranation with Triton X-100 and incubation with S-1, "arrowhead" formation was observed along the filaments of the stereocilia and their rootlets and also along filaments in the cuticular plate inside the receptor cell. The distance between attached S-1 was 35 nm and arrowheads pointed in towards the cell soma. It is concluded that the filaments of stereocilia are composed of actin.

Full Text

The Full Text of this article is available as a PDF (669.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagger-Sjöbäck D., Wersäll J. The sensory hairs and tectorial membrane of the basilar papilla in the lizard Calotes versicolor. J Neurocytol. 1973 Sep;2(3):329–350. doi: 10.1007/BF01104034. [DOI] [PubMed] [Google Scholar]
  2. Engström H., Bergström B., Ades H. W. Macula utriculi and macula sacculi in the squirrel monkey. Acta Otolaryngol Suppl. 1972;301:75–71. doi: 10.3109/00016487209122691. [DOI] [PubMed] [Google Scholar]
  3. FLOCK A. STRUCTURE OF THE MACULA UTRICULI WITH SPECIAL REFERENCE TO DIRECTIONAL INTERPLAY OF SENSORY RESPONSES AS REVEALED BY MORPHOLOGICAL POLARIZATION. J Cell Biol. 1964 Aug;22:413–431. doi: 10.1083/jcb.22.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FLOCK A., WERSALL J. A study of the orientation of the sensory hairs of the receptor cells in the lateral line organ of fish, with special reference to the function of the receptors. J Cell Biol. 1962 Oct;15:19–27. doi: 10.1083/jcb.15.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Flock A., Flock B., Murray E. Studies on the sensory hairs of receptor cells in the inner ear. Acta Otolaryngol. 1977 Jan-Feb;83(1-2):85–91. doi: 10.3109/00016487709128817. [DOI] [PubMed] [Google Scholar]
  6. Hanson J. Evidence from electron microscope studies on actin paracrystals concerning the origin of the cross-striation in the thin filaments of vertebrate skeletal muscle. Proc R Soc Lond B Biol Sci. 1973 Feb 27;183(1070):39–58. doi: 10.1098/rspb.1973.0003. [DOI] [PubMed] [Google Scholar]
  7. Harris G. G. Brownian motion in the cochlear partition. J Acoust Soc Am. 1968 Jul;44(1):176–186. doi: 10.1121/1.1911052. [DOI] [PubMed] [Google Scholar]
  8. Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
  9. Lindeman H. H., Ades H. W., Bredberg G., Engström H. The sensory hairs and the tectorial membrane in the development of the cat s organ of Corti. A scanning electron microscopic study. Acta Otolaryngol. 1971 Oct;72(4):229–242. doi: 10.3109/00016487109122478. [DOI] [PubMed] [Google Scholar]
  10. Margossian S. S., Lowey S. Substructure of the myosin molecule. IV. Interactions of myosin and its subfragments with adenosine triphosphate and F-actin. J Mol Biol. 1973 Mar 5;74(3):313–330. doi: 10.1016/0022-2836(73)90376-8. [DOI] [PubMed] [Google Scholar]
  11. Mooseker M. S. Brush border motility. Microvillar contraction in triton-treated brush borders isolated from intestinal epithelium. J Cell Biol. 1976 Nov;71(2):417–433. doi: 10.1083/jcb.71.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mooseker M. S., Tilney L. G. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol. 1975 Dec;67(3):725–743. doi: 10.1083/jcb.67.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tilney L. G., Hatano S., Ishikawa H., Mooseker M. S. The polymerization of actin: its role in the generation of the acrosomal process of certain echinoderm sperm. J Cell Biol. 1973 Oct;59(1):109–126. doi: 10.1083/jcb.59.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tilney L. G., Mooseker M. Actin in the brush-border of epithelial cells of the chicken intestine. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2611–2615. doi: 10.1073/pnas.68.10.2611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. von Düring M., Karduck A., Richter H. G. The fine structure of the inner ear in caiman crocodilus. Z Anat Entwicklungsgesch. 1974;145(1):41–65. doi: 10.1007/BF00519125. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES