Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Jan 1;76(1):158–174. doi: 10.1083/jcb.76.1.158

Phagocytosis of bacteria by polymorphonuclear leukocytes: a freeze-fracture, scanning electron microscope, and thin-section investigation of membrane structure

PL Moore, HL Bank, NT Brissie, SS Spicer
PMCID: PMC2109963  PMID: 338617

Abstract

The changes in membrane structure of rabbit polymorphonuclear (PMN) leukocytes during bacterial phagocytosis was investigated with scanning electron microscope (SEM), thin-section, and freeze-fracture techniques. SEM observations of bacterial attachment sites showed the involvement of limited areas of PMN membrane surface (0.01-0.25μm(2)). Frequently, these areas of attachment were located on membrane extensions. The membrane extensions were present before, during, and after the engulfment of bacteria, but were diminished in size after bacterial engulfment. In general, the results obtained with SEM and thin-section techniques aided in the interpretation of the three-dimensional freeze-fracture replicas. Freeze-fracture results revealed the PMN leukocytes had two fracture faces as determined by the relative density of intramembranous particles (IMP). Membranous extensions of the plasma membrane, lysosomes, and phagocytic vacuoles contained IMP's with a distribution and density similar to those of the plasma membrane. During phagocytosis, IMPs within the plasma membrane did not undergo a massive aggregation. In fact, structural changes within the membranes were infrequent and localized to regions such as the attachment sites of bacteria, the fusion sites on the plasma membrane, and small scale changes in the phagocytic vacuole membrane during membrane fusion. During the formation of the phagocytic vacuole, the IMPs of the plasma membrane appeared to move in with the lipid bilayer while maintaining a distribution and density of IMPs similar to those of the plasma membranes. Occasionally, IMPs were aligned to linear arrays within phagocytic vacuole membranes. This alignment might be due to an interaction with linearly arranged motile structures on the side of the phagocytic vacuole membranes. IMP-free regions were observed after fusion of lysosomes with the phagocytic vacuoles or plasma membrane. These IMP-free areas probably represent sites where membrane fusion occurred between lysosomal membrane and phagocytic vacuole membrane or plasma membrane. Highly symmetrical patterns of IMPs were not observed during lysosomal membrane fusion.

Full Text

The Full Text of this article is available as a PDF (5.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apostolov K., Poste G. Interaction of Sendai virus with human erythrocytes: a system for the study of membrane fusion. Microbios. 1972 Dec;6(24):247–261. [PubMed] [Google Scholar]
  2. Bainton D. F., Farquhar M. G. Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. II. Cytochemistry and electron microscopy of bone marrow cells. J Cell Biol. 1968 Nov;39(2):299–317. doi: 10.1083/jcb.39.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bank H., Robertson J. D. A simple electrode for metallic replication. J Microsc. 1976 Apr;106(3):343–349. doi: 10.1111/j.1365-2818.1976.tb02415.x. [DOI] [PubMed] [Google Scholar]
  4. Birchmeier W., Singer S. J. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. II. The role of ATP. J Cell Biol. 1977 Jun;73(3):647–659. doi: 10.1083/jcb.73.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Branton D., Bullivant S., Gilula N. B., Karnovsky M. J., Moor H., Mühlethaler K., Northcote D. H., Packer L., Satir B., Satir P. Freeze-etching nomenclature. Science. 1975 Oct 3;190(4209):54–56. doi: 10.1126/science.1166299. [DOI] [PubMed] [Google Scholar]
  6. Burwen S. J., Satir B. H. A freeze-fracture study of early membrane events during mast cell secretion. J Cell Biol. 1977 Jun;73(3):660–671. doi: 10.1083/jcb.73.3.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bächi T., Aguet M., Howe C. Fusion of erythrocytes by Sendai virus studied by immuno-freeze-etching. J Virol. 1973 Jun;11(6):1004–1012. doi: 10.1128/jvi.11.6.1004-1012.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chi E. Y., Lagunoff D., Koehler J. K. Freeze-fracture study of mast cell secretion. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2823–2827. doi: 10.1073/pnas.73.8.2823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dewald B., Rindler-Ludwig R., Bretz U., Baggiolini M. Subcellular localization and heterogeneity of neutral proteases in neutrophilic polymorphonuclear leukocytes. J Exp Med. 1975 Apr 1;141(4):709–723. doi: 10.1084/jem.141.4.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Estensen R. D., Reusch M. E., Epstein M. L., Hill H. R. Role of Ca2+ and Mg2+ in some human neutrophil functions as indicated by ionophore A23187. Infect Immun. 1976 Jan;13(1):146–151. doi: 10.1128/iai.13.1.146-151.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frye L. D., Edidin M. The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J Cell Sci. 1970 Sep;7(2):319–335. doi: 10.1242/jcs.7.2.319. [DOI] [PubMed] [Google Scholar]
  12. Goldstein I. M., Horn J. K., Kaplan H. B., Weissmann G. Calcium-induced lysozyme secretion from human polymorphonuclear leukocytes. Biochem Biophys Res Commun. 1974 Sep 23;60(2):807–812. doi: 10.1016/0006-291x(74)90312-x. [DOI] [PubMed] [Google Scholar]
  13. Goodall R. J., Thompson J. E. A scanning electron microscopic study of phagocytosis. Exp Cell Res. 1971 Jan;64(1):1–8. doi: 10.1016/0014-4827(71)90185-6. [DOI] [PubMed] [Google Scholar]
  14. HIRSCH J. G. Cinemicrophotographic observations on granule lysis in polymorphonuclear leucocytes during phagocytosis. J Exp Med. 1962 Dec 1;116:827–834. doi: 10.1084/jem.116.6.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HIRSCH J. G. Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. J Exp Med. 1956 May 1;103(5):589–611. doi: 10.1084/jem.103.5.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HORN R. G., SPICER S. S., WETZEL B. K. PHAGOCYTOSIS OF BACTERIA BY HETEROPHIL LEUKOCYTES: ACID AND ALKALINE PHOSPHATASE CYTOCHEMISTRY. Am J Pathol. 1964 Aug;45:327–335. [PMC free article] [PubMed] [Google Scholar]
  17. Hartwig J. H., Stossel T. P. Isolation and properties of actin, myosin, and a new actinbinding protein in rabbit alveolar macrophages. J Biol Chem. 1975 Jul 25;250(14):5696–5705. [PubMed] [Google Scholar]
  18. Henson P. M. The immunologic release of constituents from neutrophil leukocytes. I. The role of antibody and complement on nonphagocytosable surfaces or phagocytosable particles. J Immunol. 1971 Dec;107(6):1535–1546. [PubMed] [Google Scholar]
  19. Hitchcock S. E. Regulation of motility in nonmuscle cells. J Cell Biol. 1977 Jul;74(1):1–15. doi: 10.1083/jcb.74.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kane R. E. Preparation and purification of polymerized actin from sea urchin egg extracts. J Cell Biol. 1975 Aug;66(2):305–315. doi: 10.1083/jcb.66.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LOCKWOOD W. R., ALLISON F. ELECTRON MICROGRAPHIC STUDIES OF PHAGOCYTIC CELLS. I. MORPHOLOGICAL CHANGES OF THE CYTOPLASM AND GRANULES OF RABBIT GRANULOCYTES ASSOCIATED WITH INGESTION OF ROUGH PNEUMOCOCCUS. Br J Exp Pathol. 1963 Dec;44:593–600. [PMC free article] [PubMed] [Google Scholar]
  22. Lawson D., Raff M. C., Gomperts B., Fewtrell C., Gilula N. B. Molecular events during membrane fusion. A study of exocytosis in rat peritoneal mast cells. J Cell Biol. 1977 Feb;72(2):242–259. doi: 10.1083/jcb.72.2.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Maruta H., Korn E. D. Purification from Acanthamoeba castellanii of proteins that induce gelation and syneresis of F-actin. J Biol Chem. 1977 Jan 10;252(1):399–402. [PubMed] [Google Scholar]
  24. Moore P. L., Bank H. L., Brissie N. T., Spicer S. S. Association of microfilament bundles with lysosomes in polymorphonuclear leukocytes. J Cell Biol. 1976 Nov;71(2):659–666. doi: 10.1083/jcb.71.2.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mooseker M. S., Tilney L. G. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol. 1975 Dec;67(3):725–743. doi: 10.1083/jcb.67.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Noseworthy J., Smith G. H., Himmelhoch S. R., Evans W. H. Protein and glycoprotein electrophoretic patterns of enriched fractions of primary and secondary granules from guinea pig polymorphonuclear leukocytes. J Cell Biol. 1975 Jun;65(3):577–586. doi: 10.1083/jcb.65.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pinto da Silva P., Branton D. Membrane splitting in freeze-ethching. Covalently bound ferritin as a membrane marker. J Cell Biol. 1970 Jun;45(3):598–605. doi: 10.1083/jcb.45.3.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pinto da Silva P., Douglas S. D., Branton D. Localization of A antigen sites on human erythrocyte ghosts. Nature. 1971 Jul 16;232(5307):194–196. doi: 10.1038/232194a0. [DOI] [PubMed] [Google Scholar]
  29. Pinto da Silva P. Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation. J Cell Biol. 1972 Jun;53(3):777–787. doi: 10.1083/jcb.53.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pollard T. D., Korn E. D. Electron microscopic identification of actin associated with isolated amoeba plasma membranes. J Biol Chem. 1973 Jan 25;248(2):448–450. [PubMed] [Google Scholar]
  31. Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
  32. Quie P. G. Bactericidal function of human polymorphonuclear leukocytes. E. Mead Johnson Award Address. Pediatrics. 1972 Aug;50(2):264–270. [PubMed] [Google Scholar]
  33. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Satir B., Schooley C., Satir P. Membrane fusion in a model system. Mucocyst secretion in Tetrahymena. J Cell Biol. 1973 Jan;56(1):153–176. doi: 10.1083/jcb.56.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schiffmann E., Corcoran B. A., Wahl S. M. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1059–1062. doi: 10.1073/pnas.72.3.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sheetz M. P., Singer S. J. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. I. The role of the spectrin complex. J Cell Biol. 1977 Jun;73(3):638–646. doi: 10.1083/jcb.73.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  38. Steere R. L. Freeze-etching simplified. Cryobiology. 1969 Mar-Apr;5(5):306–323. doi: 10.1016/s0011-2240(69)80459-1. [DOI] [PubMed] [Google Scholar]
  39. Stossel T. P., Alper C. A., Rosen F. S. Serum-dependent phagocytosis of paraffin oil emulsified with bacterial lipopolysaccharide. J Exp Med. 1973 Mar 1;137(3):690–705. doi: 10.1084/jem.137.3.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stossel T. P., Hartwig J. H. Interactions between actin, myosin, and an actin-binding protein from rabbit alveolar macrophages. Alveolar macrophage myosin Mg-2+-adenosine triphosphatase requires a cofactor for activation by actin. J Biol Chem. 1975 Jul 25;250(14):5706–5712. [PubMed] [Google Scholar]
  41. Stossel T. P., Pollard T. D. Myosin in polymorphonuclear leukocytes. J Biol Chem. 1973 Dec 10;248(23):8288–8294. [PubMed] [Google Scholar]
  42. Taylor D. L., Condeelis J. S., Moore P. L., Allen R. D. The contractile basis of amoeboid movement. I. The chemical control of motility in isolated cytoplasm. J Cell Biol. 1973 Nov;59(2 Pt 1):378–394. doi: 10.1083/jcb.59.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tilney L. G., Detmers P. Actin in erythrocyte ghosts and its association with spectrin. Evidence for a nonfilamentous form of these two molecules in situ. J Cell Biol. 1975 Sep;66(3):508–520. doi: 10.1083/jcb.66.3.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tilney L. G., Mooseker M. S. Actin filament-membrane attachment: are membrane particles involved? J Cell Biol. 1976 Nov;71(2):402–416. doi: 10.1083/jcb.71.2.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Weinstein R. S., McNutt N. S. Ultrastructure of red cell membranes. Semin Hematol. 1970 Jul;7(3):259–274. [PubMed] [Google Scholar]
  46. Wetzel B. K., Horn R. G., Spicer S. S. Fine structural studies on the development of heterophil, eosinophil, and basophil granulocytes in rabbits. Lab Invest. 1967 Mar;16(3):349–382. [PubMed] [Google Scholar]
  47. White J. G. The Chediak-Higashi syndrome. Fine structure of giant inclusions in freeze-fractured neutrophils. Am J Pathol. 1973 Sep;72(3):503–520. [PMC free article] [PubMed] [Google Scholar]
  48. Wright D. G., Malawista S. E. The mobilization and extracellular release of granular enzymes from human leukocytes during phagocytosis. J Cell Biol. 1972 Jun;53(3):788–797. doi: 10.1083/jcb.53.3.788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. ZUCKER-FRANKLIN D., HIRSCH J. G. ELECTRON MICROSCOPE STUDIES ON THE DEGRANULATION OF RABBIT PERITONEAL LEUKOCYTES DURING PHAGOCYTOSIS. J Exp Med. 1964 Oct 1;120:569–576. doi: 10.1084/jem.120.4.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. da Silva P. P., Miller R. G. Membrane particles on fracture faces of frozen myelin. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4046–4050. doi: 10.1073/pnas.72.10.4046. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES