Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Jan 1;76(1):105–115. doi: 10.1083/jcb.76.1.105

Peripheral proteins and smooth membrane from erythrocyte ghosts. Segregation of ATP-utilizing enzymes into smooth membrane

PMCID: PMC2109964  PMID: 145443

Abstract

Erythrocytes and their isolated membranes display ATP-dependent endocytosis. To localize the enzymes responsible for this phenomenon, the erythrocyte membranes (ghosts) were fractionated under conditions which retained ATPase activity. Fractionation of the ghosts resulted in three fractions: spectrin-actin, the peripheral proteins soluble in high salt, and the smooth membrane containing integral proteins. On the average, 87% of the protein and 88% of the phosphorus of the original ghosts were recovered in these fractions, and all of the kinds of ATP- splitting activities of the membrane were recovered in the smooth membrane. A tiny ATPase activity, detectable by special methodology in spectrinactin, could have been due to contamination with membranous material. Although the purified spectrin-actin did not have a significant ATPase of its own, it stimulated the Ca2+, Mg2+-ATPase of the smooth membrane significantly, suggesting a cooperative interaction between these two fractions. This segregation of the ATPase activities into the smooth membrane, combined with the energy dependence of endocytosis, showed that the smooth membrane must be involved in the energy production for endocytosis. The possibility that the spectrin- actin filaments cooperate with a myosinlike ATPase in the membrane to generate membrane movements is discussed.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avissar N., de Vries A., Ben-Shaul Y., Cohen I. Actin-activated ATPase from human erythrocytes. Biochim Biophys Acta. 1975 Jan 14;375(1):35–43. doi: 10.1016/0005-2736(75)90070-x. [DOI] [PubMed] [Google Scholar]
  2. Ben-Bassat I., Bensch K. G., Schrier S. L. Drug-induced erythrocyte membrane internalization. J Clin Invest. 1972 Jul;51(7):1833–1844. doi: 10.1172/JCI106985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Conrad M. J., Penniston J. T. Resolution of erythrocyte membrane proteins by two-dimensional electrophoresis. J Biol Chem. 1976 Jan 10;251(1):253–255. [PubMed] [Google Scholar]
  4. Evans E. A. Bending resistance and chemically induced moments in membrane bilayers. Biophys J. 1974 Dec;14(12):923–931. doi: 10.1016/S0006-3495(74)85959-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fairbanks G., Avruch J. Phosphorylation of endogenous substrates by erythrocyte membrane protein kinases. II. Cyclic adenosine monophosphate-stimulated reactions. Biochemistry. 1974 Dec 31;13(27):5514–5521. doi: 10.1021/bi00724a010. [DOI] [PubMed] [Google Scholar]
  6. Gratzer W. B., Beaven G. H. Properties of the high-molecular-weight protein (spectrin) from human-erythrocyte membranes. Eur J Biochem. 1975 Oct 15;58(2):403–409. doi: 10.1111/j.1432-1033.1975.tb02387.x. [DOI] [PubMed] [Google Scholar]
  7. Hayashi H., Plishker G. A., Vaughan L., Penniston J. T. Energy-dependent endocytosis in erythrocyte ghosts. IV. Effects of Ca2+, Na+ +K+, and 5'-adenylylimidodiphosphate. Biochim Biophys Acta. 1975 Mar 13;382(2):218–229. doi: 10.1016/0005-2736(75)90180-7. [DOI] [PubMed] [Google Scholar]
  8. Jarrett H. W., Penniston J. T. A new assay for endocytosis in erythrocyte ghosts based on loss of acetylcholinesterase activity. Biochim Biophys Acta. 1976 Oct 5;448(2):314–324. doi: 10.1016/0005-2736(76)90245-5. [DOI] [PubMed] [Google Scholar]
  9. Pinto da Silva P. Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation. J Cell Biol. 1972 Jun;53(3):777–787. doi: 10.1083/jcb.53.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
  11. Schechter N. M., Sharp M., Reynolds J. A., Tanford C. Erythrocyte spectrin. Purification in deoxycholate and preliminary characterization. Biochemistry. 1976 May 4;15(9):1897–1904. doi: 10.1021/bi00654a016. [DOI] [PubMed] [Google Scholar]
  12. Schriei S. L., Bensch K. G., Johnson M., Junga I. Energized endocytosis in human erythrocyte ghosts. J Clin Invest. 1975 Jul;56(1):8–22. doi: 10.1172/JCI108083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Steck T. L. The organization of proteins in the human red blood cell membrane. A review. J Cell Biol. 1974 Jul;62(1):1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stossel T. P., Hartwig J. H. Interactions of actin, myosin, and a new actin-binding protein of rabbit pulmonary macrophages. II. Role in cytoplasmic movement and phagocytosis. J Cell Biol. 1976 Mar;68(3):602–619. doi: 10.1083/jcb.68.3.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weidekamm E., Brdiczda D. Extraction and localization of a (Ca2+ and Mg2+)-stimulated ATPase in human erythrocyte spectrin. Biochim Biophys Acta. 1975 Aug 5;401(1):51–58. doi: 10.1016/0005-2736(75)90340-5. [DOI] [PubMed] [Google Scholar]
  16. White M. D., Ralston G. B. A water-soluble Mg2+-ATPase from erythrocyte membranes. Biochim Biophys Acta. 1976 Jul 1;436(3):567–576. doi: 10.1016/0005-2736(76)90441-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES