Abstract
The sliding tubule model of ciliary motion requires that active sliding of microtubules occur by cyclic cross-bridging of the dynein arms. When isolated, demembranated Tetrahymena cilia are allowed to spontaneously disintegrate in the presence of ATP, the structural conformation of the dynein arms can be clearly resolved by negative contrast electron microscopy. The arms consist of three structural subunits that occur in two basic conformations with respect to the adjacent B subfiber. The inactive conformation occurs in the absence of ATP and is characterized by a uniform, 32 degrees base-directed polarity of the arms. Inactive arms are not attached to the B subfiber of adjacent doublets. The bridged conformation occurs strictly in the presence of ATP and is characterized by arms having the same polarity as inactive arms, but the terminal subunit of the arms has become attached to the B subfiber. In most instances the bridged conformation is accompanied by substantial tip-directed sliding displacement of the bridged doublets. Because the base-directed polarity of the bridged arms is opposite to the direction required for force generation in these cilia and because the bridges occur in the presence of ATP, it is suggested that the bridged conformation may represent the initial attachment phase of the dynein cross-bridge cycle. The force-generating phase of the cycle would then require a tip-directed deflection of the arm subunit attached to the B subfiber.
Full Text
The Full Text of this article is available as a PDF (7.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen C., Borisy G. G. Structural polarity and directional growth of microtubules of Chlamydomonas flagella. J Mol Biol. 1974 Dec 5;90(2):381–402. doi: 10.1016/0022-2836(74)90381-7. [DOI] [PubMed] [Google Scholar]
- Allen R. D. A reinvestigation of cross-sections of cilia. J Cell Biol. 1968 Jun;37(3):825–831. doi: 10.1083/jcb.37.3.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amos L., Klug A. Arrangement of subunits in flagellar microtubules. J Cell Sci. 1974 May;14(3):523–549. doi: 10.1242/jcs.14.3.523. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J. Computer simulation of flagellar movement. IV. Properties of an oscillatory two-state cross-bridge model. Biophys J. 1976 Sep;16(9):1029–1041. doi: 10.1016/S0006-3495(76)85753-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brokaw C. J. Is the 9+2 pattern of flagellar and ciliary axonemes an efficient arrangement for generating planar bending? J Mechanochem Cell Motil. 1977 Jun;4(2):101–111. [PubMed] [Google Scholar]
- Brokaw C. J. Molecular mechanism for oscillation in flagella and muscle. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3102–3106. doi: 10.1073/pnas.72.8.3102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons B. H., Gibbons I. R. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J Cell Biol. 1972 Jul;54(1):75–97. doi: 10.1083/jcb.54.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons B. H., Gibbons I. R. Functional recombination of dynein 1 with demembranated sea urchin sperm partially extracted with KC1. Biochem Biophys Res Commun. 1976 Nov 8;73(1):1–6. doi: 10.1016/0006-291x(76)90488-5. [DOI] [PubMed] [Google Scholar]
- Gibbons B. H., Gibbons I. R. Properties of flagellar "rigor waves" formed by abrupt removal of adenosine triphosphate from actively swimming sea urchin sperm. J Cell Biol. 1974 Dec;63(3):970–985. doi: 10.1083/jcb.63.3.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holwill M. E., McGregor J. L. Control of flagellar wave movement in Crithidia oncopelti. Nature. 1975 May 8;255(5504):157–158. doi: 10.1038/255157a0. [DOI] [PubMed] [Google Scholar]
- Holwill M. E., McGregor J. L. Micromanipulation of the flagellum of Crithidia oncopelti. I. Mechanical effects. J Exp Biol. 1974 Apr;60(2):437–444. doi: 10.1242/jeb.60.2.437. [DOI] [PubMed] [Google Scholar]
- Hyams J., Chasey D. Aspects of the flagellar apparatus and associated microtubules in a marine alga. Exp Cell Res. 1974 Mar 15;84(1):381–387. doi: 10.1016/0014-4827(74)90419-4. [DOI] [PubMed] [Google Scholar]
- Sale W. S., Satir P. Direction of active sliding of microtubules in Tetrahymena cilia. Proc Natl Acad Sci U S A. 1977 May;74(5):2045–2049. doi: 10.1073/pnas.74.5.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satir P. Studies on cilia. 3. Further studies on the cilium tip and a "sliding filament" model of ciliary motility. J Cell Biol. 1968 Oct;39(1):77–94. doi: 10.1083/jcb.39.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warner F. D. Ciliary inter-microtubule bridges. J Cell Sci. 1976 Jan;20(1):101–114. doi: 10.1242/jcs.20.1.101. [DOI] [PubMed] [Google Scholar]
- Warner F. D., Mitchell D. R., Perkins C. R. Structural conformation of the ciliary ATPase dynein. J Mol Biol. 1977 Aug 15;114(3):367–384. doi: 10.1016/0022-2836(77)90255-8. [DOI] [PubMed] [Google Scholar]
- Warner F. D., Satir P. The structural basis of ciliary bend formation. Radial spoke positional changes accompanying microtubule sliding. J Cell Biol. 1974 Oct;63(1):35–63. doi: 10.1083/jcb.63.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]