Abstract
A membrane subfraction obtained from secretion granules isolated from rabbit parotid has been shown to be contaminated by residual secretory proteins to an estimated level of 25-30% of its total protein. In the present study an additional contaminant has been identified by improved mixing experiments and by comparative peptide mapping of specific polypeptides recovered from gels of membrane and content subfractions. This contaminant coelectrophoresis with (and probably comprises the bulk of) the majority component of the membrane subfraction (mol wt approximately 40,000). The contaminating polypeptides can be removed to a large extent by treating the membranes with low concentrations of saponin in the presence of 0.3 M Na2SO4. Although this treatment disrupts the typical bilayer structure of the granule membrane, it does not appear to cause dissociation of its phospholipids or bona fide membrane proteins.
Full Text
The Full Text of this article is available as a PDF (3.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BANGHAM A. D., HORNE R. W., GLAUERT A. M., DINGLE J. T., LUCY J. A. Action of saponin on biological cell membranes. Nature. 1962 Dec 8;196:952–955. doi: 10.1038/196952a0. [DOI] [PubMed] [Google Scholar]
- Bangham A. D., Dingle J. T., Lucy J. A. Studies on the mode of action of excess of vitamin A. 9. Penetration of lipid monolayers by compounds in the vitamin A series. Biochem J. 1964 Jan;90(1):133–140. doi: 10.1042/bj0900133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Bray D., Brownlee S. M. Peptide mapping of proteins from acrylamide gels. Anal Biochem. 1973 Sep;55(1):213–221. doi: 10.1016/0003-2697(73)90306-0. [DOI] [PubMed] [Google Scholar]
- COOPER C., LEHNINGER A. L. Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. I. The span beta-hydroxybutyrate to oxygen. J Biol Chem. 1956 Mar;219(1):489–506. [PubMed] [Google Scholar]
- Castle J. D., Jamieson J. D., Palade G. E. Radioautographic analysis of the secretory process in the parotid acinar cell of the rabbit. J Cell Biol. 1972 May;53(2):290–311. doi: 10.1083/jcb.53.2.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castle J. D., Jamieson J. D., Palade G. E. Secretion granules of the rabbit parotid gland. Isolation, subfractionation, and characterization of the membrane and content subfractions. J Cell Biol. 1975 Jan;64(1):182–210. doi: 10.1083/jcb.64.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DOURMASHKIN R. R., DOUGHERTY R. M., HARRIS R. J. Electron microscopic observations on Rous sarcoma virus and cell membranes. Nature. 1962 Jun 23;194:1116–1119. doi: 10.1038/1941116a0. [DOI] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- GLAUERT A. M., DANIEL M. R., LUCY J. A., DINGLE J. T. Studies on the mode of action of excess of vitamin A. VII. Changes in the fine structure of erythrocytes during haemolysis by vitamin A. J Cell Biol. 1963 Apr;17:111–121. doi: 10.1083/jcb.17.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GORNALL A. G., BARDAWILL C. J., DAVID M. M. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949 Feb;177(2):751–766. [PubMed] [Google Scholar]
- HAAS D. W., ELLIOTT W. B. Oxidative phosphorylation and respiratory control in digitonin fragments of beef heart mitochondria. J Biol Chem. 1963 Mar;238:1132–1136. [PubMed] [Google Scholar]
- HAM R. G. CLONAL GROWTH OF MAMMALIAN CELLS IN A CHEMICALLY DEFINED, SYNTHETIC MEDIUM. Proc Natl Acad Sci U S A. 1965 Feb;53:288–293. doi: 10.1073/pnas.53.2.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinsky S. C., Luse S. A., van Deenen L. L. Interaction of polyene antibiotics with natural and artificial membrane systems. Fed Proc. 1966 Sep-Oct;25(5):1503–1510. [PubMed] [Google Scholar]
- Kreibich G., Debey P., Sabatini D. D. Selective release of content from microsomal vesicles without membrane disassembly. I. Permeability changes induced by low detergent concentrations. J Cell Biol. 1973 Aug;58(2):436–462. doi: 10.1083/jcb.58.2.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
- MacDonald R. J., Ronzio R. A. Comparative analysis of zymogen granule membrane polypeptides. Biochem Biophys Res Commun. 1972 Oct 17;49(2):377–382. doi: 10.1016/0006-291x(72)90421-4. [DOI] [PubMed] [Google Scholar]
- Mangos J. A., Braun G. Excretion of total solute, sodium and potassium in the saliva of the rat parotid gland. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;290(2):184–192. doi: 10.1007/BF00363695. [DOI] [PubMed] [Google Scholar]
- Rosenberg S. A., Guidotti G. Fractionation of the protein components of human erythrocyte membranes. J Biol Chem. 1969 Oct 10;244(19):5118–5124. [PubMed] [Google Scholar]
- Seeman P., Cheng D., Iles G. H. Structure of membrane holes in osmotic and saponin hemolysis. J Cell Biol. 1973 Feb;56(2):519–527. doi: 10.1083/jcb.56.2.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seeman P. Transient holes in the erythrocyte membrane during hypotonic hemolysis and stable holes in the membrane after lysis by saponin and lysolecithin. J Cell Biol. 1967 Jan;32(1):55–70. doi: 10.1083/jcb.32.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seeman P. Ultrastructure of membrane lesions in immune lysis, osmotic lysis and drug-induced lysis. Fed Proc. 1974 Oct;33(10):2116–2124. [PubMed] [Google Scholar]
- THAYSEN J. H., THORN N. A., SCHWARTZ I. L. Excretion of sodium, potassium, chloride and carbon dioxide in human parotid saliva. Am J Physiol. 1954 Jul;178(1):155–159. doi: 10.1152/ajplegacy.1954.178.1.155. [DOI] [PubMed] [Google Scholar]
- Wallach D., Kirshner N., Schramm M. Non-parallel transport of membrane proteins and content proteins during assembly of the secretory granule in rat parotid gland. Biochim Biophys Acta. 1975 Jan 14;375(1):87–105. doi: 10.1016/0005-2736(75)90074-7. [DOI] [PubMed] [Google Scholar]