Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Feb 1;76(2):371–385. doi: 10.1083/jcb.76.2.371

Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. I. Use of chlorotetracycline as fluorescent probe

D E Chandler 1, J A Williams 1
PMCID: PMC2109985  PMID: 10605444

Abstract

Stimulus-secretion coupling in pancreatic exocrine cells was studied using dissociated acini, prepared from mouse pancreas, and chlorotetracycline (CTC), a fluorescent probe which forms highly fluorescent complexes with Ca2+ and Mg2+ ions bound to membranes. Acini, preloaded by incubation with CTC (100 microM), displayed a fluorescence having spectral properties like that of CTC complexed to calcium (excitation and emission maxima at 398 and 527 nm, respectively). Stimulation with either bethanechol or caerulein resulted in a rapid loss of fluorescence intensity and an increase in outflux of CTC from the acini. After 5 min of stimulation, acini fluorescence had been reduced by 40% and appeared to be that of CTC complexed to Mg2+ (excitation and emission maxima at 393 and 521 nm, respectively). The fluorescence loss induced by bethanechol was blocked by atropine and was seen at all agonist concentrations that elicited amylase release. Maximal fluorescence loss, however, required a bethanechol concentration three times greater than that needed for maximal amylase release. In contrast, acini preloaded with ANS or oxytetracycline, probes that are relatively insensitive to membrane-bound divalent cations, displayed no secretagogue-induced fluorescence changes. These results are consistent with the hypothesis that CTC is able to probe some set of intracellular membranes which release calcium during secretory stimulation and that this release results in dissociation of Ca(2+)-complexed CTC.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amsterdam A., Jamieson J. D. Studies on dispersed pancreatic exocrine cells. I. Dissociation technique and morphologic characteristics of separated cells. J Cell Biol. 1974 Dec;63(3):1037–1056. doi: 10.1083/jcb.63.3.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Argent B. E., Case R. M., Scratcherd T. Amylase secretion by the perfused cat pancreas in relation to the secretion of calcium and other electrolytes and as influenced by the external ionic environment. J Physiol. 1973 May;230(3):575–593. doi: 10.1113/jphysiol.1973.sp010205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Case R. M., Clausen T. The relationship between calcium exchange and enzyme secretion in the isolated rat pancreas. J Physiol. 1973 Nov;235(1):75–102. doi: 10.1113/jphysiol.1973.sp010379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caswell A. H., Hutchison J. D. Visualization of membrane bound cations by a fluorescent technique. Biochem Biophys Res Commun. 1971 Jan 8;42(1):43–49. doi: 10.1016/0006-291x(71)90359-7. [DOI] [PubMed] [Google Scholar]
  5. Caswell A. H., Pressman B. C. Kinetics of transport of divalent cations across sarcoplasmic reticulum vesicles induced by ionophores. Biochem Biophys Res Commun. 1972 Oct 6;49(1):292–298. doi: 10.1016/0006-291x(72)90043-5. [DOI] [PubMed] [Google Scholar]
  6. Caswell A. H., Warren S. Observation of calcium uptake by isolated sarcoplasmic reticulum employing a fluorescent chelate probe. Biochem Biophys Res Commun. 1972 Mar 10;46(5):1757–1763. doi: 10.1016/0006-291x(72)90047-2. [DOI] [PubMed] [Google Scholar]
  7. Ceccarelli B., Clemente F., Meldolesi J. Secretion of calcium in pancreatic juice. J Physiol. 1975 Mar;245(3):617–638. doi: 10.1113/jphysiol.1975.sp010865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chandler D. E., Williams J. A. Fluorescent probe detects redistribution of cell calcium during stimulus-secretion coupling. Nature. 1977 Aug 18;268(5621):659–660. doi: 10.1038/268659a0. [DOI] [PubMed] [Google Scholar]
  9. Chandler D. E., Williams J. A. Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. II. Subcellular localization of the fluorescent probe chlorotetracycline. J Cell Biol. 1978 Feb;76(2):386–399. doi: 10.1083/jcb.76.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chandler D. E., Williams J. A. Intracellular uptake and alpha-amylase and lactate dehydrogenase releasing actions of the divalent cation ionophore A23187 in dissociated pancreatic acinar cells. J Membr Biol. 1977 Apr 22;32(3-4):201–230. doi: 10.1007/BF01905220. [DOI] [PubMed] [Google Scholar]
  11. Clemente F., Meldolesi J. Calcium and pancreatic secretion-dynamics of subcellur calcium pools in resting and stimulated acinar cells. Br J Pharmacol. 1975 Nov;55(3):369–379. doi: 10.1111/j.1476-5381.1975.tb06940.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Clemente F., Meldolesi J. Calcium and pancreatic secretion. I. Subcellular distribution of calcium and magnesium in the exocrine pancreas of the guinea pig. J Cell Biol. 1975 Apr;65(1):88–102. doi: 10.1083/jcb.65.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dockter M. E., Magnuson J. A. Characterization of the active transport of chlorotetracycline in staphylococcus aureus by a fluorescence technique. J Supramol Struct. 1974;2(1):32–44. doi: 10.1002/jss.400020105. [DOI] [PubMed] [Google Scholar]
  14. Eimerl S., Savion N., Heichal O., Selinger Z. Induction of enzyme secretion in rat pancreatic slices using the ionophore A-23187 and calcium. An experimental bypass of the hormone receptor pathway. J Biol Chem. 1974 Jun 25;249(12):3991–3993. [PubMed] [Google Scholar]
  15. Heisler S., Grondin G. Effect of lanthanum on 45Ca flux and secretion of protein from rat exocrine pancreas. Life Sci. 1973 Oct 1;13(7):783–794. doi: 10.1016/0024-3205(73)90069-6. [DOI] [PubMed] [Google Scholar]
  16. Kondo S., Schulz I. Ca++ fluxes in isolated cells of rat pancreas. effect of secretagogues and different Ca++ concentrations. J Membr Biol. 1976 Oct 20;29(1-2):185–203. doi: 10.1007/BF01868959. [DOI] [PubMed] [Google Scholar]
  17. Kondo S., Schulz I. Calcium ion uptake in isolated pancreas cells induced by secretagogues. Biochim Biophys Acta. 1976 Jan 8;419(1):76–92. doi: 10.1016/0005-2736(76)90373-4. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Le Breton G. C., Dinerstein R. J., Roth L. J., Feinberg H. Direct evidence for intracellular divalent cation redistribution associated with platelet shape change. Biochem Biophys Res Commun. 1976 Jul 12;71(1):362–370. doi: 10.1016/0006-291x(76)90291-6. [DOI] [PubMed] [Google Scholar]
  20. Luthra R., Olson M. S. Studies of mitochondrial calcium movements using chlorotetracycline. Biochim Biophys Acta. 1976 Sep 13;440(3):744–758. doi: 10.1016/0005-2728(76)90056-6. [DOI] [PubMed] [Google Scholar]
  21. Matthews E. K., Petersen O. H. Pancreatic acinar cells: ionic dependence of the membrane potential and acetycholine-induced depolarization. J Physiol. 1973 Jun;231(2):283–295. doi: 10.1113/jphysiol.1973.sp010233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Poulsen J. H., Williams J. A. Effect of extracellular K+ concentration on resting potential, caerulein-induced depolarization and amylase release from mouse pancreatic acinar cells. Pflugers Arch. 1977 Aug 29;370(2):173–177. doi: 10.1007/BF00581691. [DOI] [PubMed] [Google Scholar]
  23. Rinderknecht H., Wilding P., Haverback B. J. A new method for the determination of alpha-amylase. Experientia. 1967 Oct 15;23(10):805–805. doi: 10.1007/BF02146851. [DOI] [PubMed] [Google Scholar]
  24. Waggoner A. Optical probes of membrane potential. J Membr Biol. 1976 Jun 30;27(4):317–334. doi: 10.1007/BF01869143. [DOI] [PubMed] [Google Scholar]
  25. Williams J. A. An in vitro evaluation of possible cholinergic and adrenergic receptors affecting pancreatic amylase secretion. Proc Soc Exp Biol Med. 1975 Nov;150(2):513–516. doi: 10.3181/00379727-150-39067. [DOI] [PubMed] [Google Scholar]
  26. Williams J. A., Cary P., Moffat B. Effects of ions on amylase release by dissociated pancreatic acinar cells. Am J Physiol. 1976 Nov;231(5 Pt 1):1562–1567. doi: 10.1152/ajplegacy.1976.231.5.1562. [DOI] [PubMed] [Google Scholar]
  27. Williams J. A., Chandler D. Ca++ and pancreatic amylase release. Am J Physiol. 1975 Jun;228(6):1729–1732. doi: 10.1152/ajplegacy.1975.228.6.1729. [DOI] [PubMed] [Google Scholar]
  28. Williams J. A. Effects of cytochalasin B on pancreatic acinar cell structure and secretion. Cell Tissue Res. 1977 Apr 29;179(4):453–466. doi: 10.1007/BF00219848. [DOI] [PubMed] [Google Scholar]
  29. Williams J. A., Lee M. Pancreatic acinar cells: use of Ca++ ionophore to separate enzyme release from the earlier steps in stimulus-secretion coupling. Biochem Biophys Res Commun. 1974 Sep 23;60(2):542–548. doi: 10.1016/0006-291x(74)90274-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES