Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Feb 1;76(2):532–544. doi: 10.1083/jcb.76.2.532

Quantitative analysis of low-resistance junctions between cultured cells and correlation with gap-junctional areas

J D Sheridan 1, M Hammer-Wilson 1, D Preus 1, R G Johnson 1
PMCID: PMC2109986  PMID: 10605455

Abstract

Electrophysiological studies of low-resistance junctions between Novikoff hepatoma cells grown in suspension cultures were carried out and correlated with gap-junctional areas per inferface determined by freeze-fracture. The mean coupling coefficient between isolated cell pairs was 0.773 +/- 0.025 (SEM) in 67G medium and 0.653 +/- 0.028 in M67 medium; the respective means for the central pairs of four-cell chains were 0.714 +/- 0.034 and 0.595 +/- 0.026. Mean estimates of nonjunctional resistances for cell pairs were 3.0 +/- 0.32 x 10(7) ohm (67G) and 2.01 +/- 0.01 x 10(7) ohm (M67), and the respective estimates for specific nonjunctional resistances were 158.6 +/- 8.1 ohm-cm2 (67G) and 133.0 +/- 812 ohm-cm2 (M67). Mean estimates of junctional conductances were 0.409 +/- 0.058 x 10(-6) mho (67G) and 0.211 +/- 0.018 x 10(-6) mho (M67) for pairs and 0.291 +/- 0.063 x 10(-6) mho (67G) and 0.212 +/- 0.04 mho (M67) for four-cell chains. The mean area of gap junction per interface for separate cell populations was 0.187 +/- 0.049 micron 2 and 0.269 +/- 0.054 micron 2 for cells fixed in loose pellets and in suspension, respectively. When compared with the mean junctional conductance, these values gave specific junctional conductance estimates of 1.13 x 10(2) mho/cm2 and 0.78 x 10(2) mho/cm2, respectively. These values are higher than most previous estimates, but are consistent with the hypothesis that gap-junctional particles contain central hydrophilic channels, about 2 nm in diameter, which have cytoplasmic resistivity.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett M. V. Physiology of electrotonic junctions. Ann N Y Acad Sci. 1966 Jul 14;137(2):509–539. doi: 10.1111/j.1749-6632.1966.tb50178.x. [DOI] [PubMed] [Google Scholar]
  2. Bennett M. V., Spira M. E., Pappas G. D. Properties of electrotonic junctions between embryonic cells of Fundulus. Dev Biol. 1972 Dec;29(4):419–435. doi: 10.1016/0012-1606(72)90082-6. [DOI] [PubMed] [Google Scholar]
  3. FURSHPAN E. J., POTTER D. D. Transmission at the giant motor synapses of the crayfish. J Physiol. 1959 Mar 3;145(2):289–325. doi: 10.1113/jphysiol.1959.sp006143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hülser D. F., Webb D. J. Relation between ionic coupling and morphology of established cells in culture. Exp Cell Res. 1973 Jul;80(1):210–222. doi: 10.1016/0014-4827(73)90291-7. [DOI] [PubMed] [Google Scholar]
  5. Ito S., Sato E., Loewenstein W. R. Studies on the formation of a permeable cell membrane junction. II. Evolving junctional conductance and junctional insulation. J Membr Biol. 1974;19(4):339–355. doi: 10.1007/BF01869985. [DOI] [PubMed] [Google Scholar]
  6. Johnson R. G., Sheridan J. D. Junctions between cancer cells in culture: ultrastructure and permeability. Science. 1971 Nov 12;174(4010):717–719. doi: 10.1126/science.174.4010.717. [DOI] [PubMed] [Google Scholar]
  7. Johnson R., Hammer M., Sheridan J., Revel J. P. Gap junction formation between reaggregated Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4536–4540. doi: 10.1073/pnas.71.11.4536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Katz B., Miledi R. The statistical nature of the acetycholine potential and its molecular components. J Physiol. 1972 Aug;224(3):665–699. doi: 10.1113/jphysiol.1972.sp009918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Loewenstein W. R., Nakas M., Socolar S. J. Junctional membrane uncoupling. Permeability transformations at a cell membrane junction. J Gen Physiol. 1967 Aug;50(7):1865–1891. doi: 10.1085/jgp.50.7.1865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. O'Lague P., Dalen H., Rubin H., Tobias C. Electrical coupling: low resistance junctions between mitotic and interphase fibroblasts in tissue culture. Science. 1970 Oct 23;170(3956):464–466. doi: 10.1126/science.170.3956.464. [DOI] [PubMed] [Google Scholar]
  11. Payton B. W., Bennett M. V., Pappas G. D. Permeability and structure of junctional membranes at an electrotonic synapse. Science. 1969 Dec 26;166(3913):1641–1643. doi: 10.1126/science.166.3913.1641. [DOI] [PubMed] [Google Scholar]
  12. Payton B. W., Bennett M. V., Pappas G. D. Temperature-dependence of resistance at an electrotonic synapse. Science. 1969 Aug 8;165(3893):594–597. doi: 10.1126/science.165.3893.594. [DOI] [PubMed] [Google Scholar]
  13. Plagemann P. G., Swim H. E. Replication of mengovirus. I. Effect on synthesis of macromolecules by host cell. J Bacteriol. 1966 Jun;91(6):2317–2326. doi: 10.1128/jb.91.6.2317-2326.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Potter D. D., Furshpan E. J., Lennox E. S. Connections between cells of the developing squid as revealed by electrophysiological methods. Proc Natl Acad Sci U S A. 1966 Feb;55(2):328–336. doi: 10.1073/pnas.55.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Revel J. P., Yee A. G., Hudspeth A. J. Gap junctions between electrotonically coupled cells in tissue culture and in brown fat. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2924–2927. doi: 10.1073/pnas.68.12.2924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Slack C., Warner A. E. Properties of surface and junctional membranes of embryonic cells isolated from blastula stages of Xenopus laevis. J Physiol. 1975 Jun;248(1):97–120. doi: 10.1113/jphysiol.1975.sp010964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Socolar S. J. Cell coupling in epithella. Exp Eye Res. 1973 May 24;15(6):693–698. doi: 10.1016/0014-4835(73)90003-1. [DOI] [PubMed] [Google Scholar]
  18. Socolar S. J. The coupling coefficient as an index of junctional conductance. J Membr Biol. 1977 Jun 3;34(1):29–37. doi: 10.1007/BF01870291. [DOI] [PubMed] [Google Scholar]
  19. Spira A. W. The nexus in the intercalated disc of the canine heart: quantitative data for an estimation of its resistance. J Ultrastruct Res. 1971 Mar;34(5):409–425. doi: 10.1016/s0022-5320(71)80055-2. [DOI] [PubMed] [Google Scholar]
  20. Subak-Sharpe H., Bürk R. R., Pitts J. D. Metabolic co-operation between biochemically marked mammalian cells in tissue culture. J Cell Sci. 1969 Mar;4(2):353–367. doi: 10.1242/jcs.4.2.353. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES