Abstract
Aequorin-injected eggs of the medaka (a fresh water fish) show an explosive rise in free calcium during fertilization, which is followed by a slow return to the resting level. Image intensification techniques now show a spreading wave of high free calcium during fertilization. The wave starts at the animal pole (where the sperm enters) and then traverses the egg as a shallow, roughly 20 degrees-wide band which vanishes at the antipode some minutes later. The peak free calcium concentration within this moving band is estimated to be about 30 microM (perhaps 100-1,000 times the resting level). Eggs activated by ionophore A23187 may show multiple initiation sites. The resulting multiple waves never spread through each other; rather, they fuse upon meeting so as to form spreading waves of compound origin. The fertilization wave is nearly independent of extracellular calcium because it is only slightly slowed (by perhaps 15%) in a medium containing 5 mM ethylene glycol-bis[beta-aminoethyl ether]N,N'-tetraacetic acid (EGTA) and no deliberately added calcium. It is also independent of the large cortical vesicles, which may be centrifugally displaced. Normally, however, it distinctly precedes the well-known wave of cortical vesicle exocytosis. We conclude that the fertilization wave in the medaka egg is propagated by calcium-stimulated calcium release, primarily from some internal sources other than the large cortical vesicles. A comparison of the characteristics of the exocytotic wave in the medaka with that in other eggs, particularly in echinoderm eggs, suggests that such a propagated calcium wave is a general feature of egg activation.
Full Text
The Full Text of this article is available as a PDF (3.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen D. G., Blinks J. R., Prendergast F. G. Aequorin luminescence: relation of light emission to calcium concentration--a calcium-independent component. Science. 1977 Mar 11;195(4282):996–998. doi: 10.1126/science.841325. [DOI] [PubMed] [Google Scholar]
- Ashley C. C. An estimate of calcium concentration changes during the contraction of single muscle fibres. J Physiol. 1970 Sep;210(2):133P–134P. [PubMed] [Google Scholar]
- Ashley C. C., Ellory J. C. The efflux of magnesium from single crustacean muscle fibres. J Physiol. 1972 Nov;226(3):653–674. doi: 10.1113/jphysiol.1972.sp010002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blinks J. R., Prendergast F. G., Allen D. G. Photoproteins as biological calcium indicators. Pharmacol Rev. 1976 Mar;28(1):1–93. [PubMed] [Google Scholar]
- Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
- Endo M., Tanaka M., Ogawa Y. Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature. 1970 Oct 3;228(5266):34–36. doi: 10.1038/228034a0. [DOI] [PubMed] [Google Scholar]
- Ford L. E., Podolsky R. J. Regenerative calcium release within muscle cells. Science. 1970 Jan 2;167(3914):58–59. doi: 10.1126/science.167.3914.58. [DOI] [PubMed] [Google Scholar]
- Fraser L. R. Physico-chemical properties of an agent that induces parthenogenesis in Rana pipiens eggs. J Exp Zool. 1971 Jun;177(2):153–172. doi: 10.1002/jez.1401770204. [DOI] [PubMed] [Google Scholar]
- Grey R. D., Wolf D. P., Hedrick J. L. Formation and structure of the fertilization envelope in Xenopus laevis. Dev Biol. 1974 Jan;36(1):44–61. doi: 10.1016/0012-1606(74)90189-4. [DOI] [PubMed] [Google Scholar]
- Johnson J. D., Epel D. Intracellular pH and activation of sea urchin eggs after fertilisation. Nature. 1976 Aug 19;262(5570):661–664. doi: 10.1038/262661a0. [DOI] [PubMed] [Google Scholar]
- Natori R. The electric potential change of internal membrane during propagation of contraction in skinned fibre of toad skeletal muscle. Jpn J Physiol. 1975;25(1):51–63. doi: 10.2170/jjphysiol.25.51. [DOI] [PubMed] [Google Scholar]
- Nicosia S. V., Wolf D. P., Inoue M. Cortical granule distribution and cell surface characteristics in mouse eggs. Dev Biol. 1977 May;57(1):56–74. doi: 10.1016/0012-1606(77)90354-2. [DOI] [PubMed] [Google Scholar]
- Paul M., Epel D. Fertilization-associated light-scattering changes in eggs of the sea urchin Strongylocentrotus purpuratus. Exp Cell Res. 1971 Apr;65(2):281–288. doi: 10.1016/0014-4827(71)90003-6. [DOI] [PubMed] [Google Scholar]
- Pfeiffer D. R., Lardy H. A. Ionophore A23187: the effect of H+ concentration on complex formation with divalent and monovalent cations and the demonstration of K+ transport in mitochondria mediated by A23187. Biochemistry. 1976 Mar 9;15(5):935–943. doi: 10.1021/bi00650a001. [DOI] [PubMed] [Google Scholar]
- ROTHSCHILD, SWANN M. M. The fertilization reaction in the sea-urchin egg; a propagated response to sperm attachment. J Exp Biol. 1949 Aug;26(2):164-76, 4 pl. doi: 10.1242/jeb.26.2.164. [DOI] [PubMed] [Google Scholar]
- Reynolds G. T. Image intensification applied to biological problems. Q Rev Biophys. 1972 Aug;5(3):295–347. doi: 10.1017/s0033583500000974. [DOI] [PubMed] [Google Scholar]
- Ridgway E. B., Gilkey J. C., Jaffe L. F. Free calcium increases explosively in activating medaka eggs. Proc Natl Acad Sci U S A. 1977 Feb;74(2):623–627. doi: 10.1073/pnas.74.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rousseau P., Meda P., Lecart C., Haumont S., Ferin J. Cortical granule release in human follicular oocytes. Biol Reprod. 1977 Feb;16(1):104–111. doi: 10.1095/biolreprod16.1.104. [DOI] [PubMed] [Google Scholar]
- Steinhardt R. A., Epel D., Carroll E. J., Jr, Yanagimachi R. Is calcium ionophore a universal activator for unfertilised eggs? Nature. 1974 Nov 1;252(5478):41–43. doi: 10.1038/252041a0. [DOI] [PubMed] [Google Scholar]
- Szollosi D. Development of cortical granules and the cortical reaction in rat and hamster eggs. Anat Rec. 1967 Dec;159(4):431–446. doi: 10.1002/ar.1091590412. [DOI] [PubMed] [Google Scholar]
- Uehara T., Sugiyama M. Propagation of the fertilization-wave on the once-activated surface of the sea urchin egg. Embryologia (Nagoya) 1969 Feb;10(3):356–362. [PubMed] [Google Scholar]
- Uehara T., Yanagimachi R. Activation of hamster eggs by pricking. J Exp Zool. 1977 Feb;199(2):269–274. doi: 10.1002/jez.1401990211. [DOI] [PubMed] [Google Scholar]
- Wolf D. P. The cortical granule reaction in living eggs of the toad, Xenopus laevis. Dev Biol. 1974 Jan;36(1):62–71. doi: 10.1016/0012-1606(74)90190-0. [DOI] [PubMed] [Google Scholar]
- Wolf D. P. The cortical response in Xenopus laevis ova. Dev Biol. 1974 Sep;40(1):102–115. doi: 10.1016/0012-1606(74)90112-2. [DOI] [PubMed] [Google Scholar]
- YAMAMOTO T. O. Physiology of fertilization in fish eggs. Int Rev Cytol. 1961;12:361–405. doi: 10.1016/s0074-7696(08)60545-8. [DOI] [PubMed] [Google Scholar]
- YAMAMOTO T. Physiological studies on fertilization and activation of fish eggs. V. The role of calcium ions in activation of Oryzias eggs. Exp Cell Res. 1954 Feb;6(1):56–68. doi: 10.1016/0014-4827(54)90147-0. [DOI] [PubMed] [Google Scholar]