Abstract
Dihydrocytochalasin B (H2CB) does not inhibit sugar uptake in BALB/c 3T3 cells. Excess H2CB does not affect inhibition of sugar uptake by cytochalasin B (CB), indicating that it does not compete with CB for binding to high-affinity sites. As in the case of CB, H2CB inhibits cytokinesis and changes the morphology of the cells. These results demonstrate that the effects of CB on sugar transport and on cell motility and morphology involve separate and independent sites. Comparison of the effects of H2CB, CB, and cytochalasin D (CD) indicates that treatment of cells with any one of the compounds results in the same series of morphological changes; the cells undergo zeiosis and elongation at 2-4 microM CB and become arborized and rounded up at 10-50 microM CB. H2CB is slightly less potent than CB, whereas CD is five to eight times more potent than CB in causing a given state of morphological change. These results indicate that the cytochalasin-induced changes in cell morphology are mediated by a specific site(s) which can distinguish the subtle differences in the structures of the three compounds. Competitive binding studies indicate that excess H2CB displaces essentially all of the high-affinity bound [3H]CB, but, at less than 5 x 10(-5) M H2CB is not so efficient as unlabeled CB in the displacement reaction. In contrast, excess CD displaces up to 40% of the bound [3H]CB. These results suggest that three different classes of high-affinity CB binding sites exist in 3T3 cells: sites related to sugar transport, sites related to cell motility and morphology, and sites with undetermined function.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atlas S. J., Lin S. High-affinity cytochalasin B binding to normal and transformed BALB/3T3 cells. J Cell Physiol. 1976 Dec;89(4):751–756. doi: 10.1002/jcp.1040890436. [DOI] [PubMed] [Google Scholar]
- Buckley I. K. Subcellular motility: a correlated light and electron microscopic study using cultured cells. Tissue Cell. 1974;6(1):1–20. doi: 10.1016/0040-8166(74)90019-6. [DOI] [PubMed] [Google Scholar]
- Czech M. P. Characterization of (3H)cytochalasin B binding to the fat cell plasma membrane. J Biol Chem. 1976 May 25;251(10):2905–2910. [PubMed] [Google Scholar]
- Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
- Hatanaka M. Transport of sugars in tumor cell membranes. Biochim Biophys Acta. 1974 Apr 29;355(1):77–104. doi: 10.1016/0304-419x(74)90008-0. [DOI] [PubMed] [Google Scholar]
- Kelly F., Sambrook J. Differential effect of cytochalasin B on normal and transformed mouse cells. Nat New Biol. 1973 Apr 18;242(120):217–219. doi: 10.1038/newbio242217a0. [DOI] [PubMed] [Google Scholar]
- Kletzien R. F., Perdue J. F., Springer A. Cytochalasin A and B. Inhibition of sugar uptake in cultured cells. J Biol Chem. 1972 May 10;247(9):2964–2966. [PubMed] [Google Scholar]
- Lin S., Santi D. V., Spudich J. A. Biochemical studies on the mode of action of cytochalasin B. Preparation of (3H)cytochalasin B and studies on its binding of cells. J Biol Chem. 1974 Apr 10;249(7):2268–2274. [PubMed] [Google Scholar]
- Lin S., Snyder C. E., Jr High affinity cytochalasin B binding to red cell membrane proteins which are unrelated to sugar transport. J Biol Chem. 1977 Aug 10;252(15):5464–5471. [PubMed] [Google Scholar]
- Lin S., Spudich J. A. Binding of cytochalasin B to a red cell membrane protein. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1471–1476. doi: 10.1016/s0006-291x(74)80449-3. [DOI] [PubMed] [Google Scholar]
- Lin S., Spudich J. A. Biochemical studies on the mode of action of cytochalasin B. Cytochalasin B binding to red cell membrane in relation to glucose transport. J Biol Chem. 1974 Sep 25;249(18):5778–5783. [PubMed] [Google Scholar]
- Lin S., Spudich J. A. On the molecular basis of action of cytochalasin B. J Supramol Struct. 1974;2(5-6):728–736. doi: 10.1002/jss.400020516. [DOI] [PubMed] [Google Scholar]
- Mayhew E., Poste G., Cowden M., Tolson N., Maslow D. Cellular binding of 3H-cytochalasin B. J Cell Physiol. 1974 Dec;84(3):373–382. doi: 10.1002/jcp.1040840306. [DOI] [PubMed] [Google Scholar]
- Miranda A. F., Godman G. C., Deitch A. D., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. I. Early events. J Cell Biol. 1974 May;61(2):481–500. doi: 10.1083/jcb.61.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miranda A. F., Godman G. C., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. II. Cortex and microfilaments. J Cell Biol. 1974 Aug;62(2):406–423. doi: 10.1083/jcb.62.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plagemann P. G., Graff J. C., Wohlhueter R. M. Binding of [3H]cytochalasin B and its relationship to inhibition of hexose transport in Novkoff rat hepatoma cells. J Biol Chem. 1977 Jun 25;252(12):4191–4201. [PubMed] [Google Scholar]
- Plagemann P. G., Zylka J. H., Erbe J., Estensen R. D. Membrane effects of cytochalasin B. Competitive inhibition of facilitated diffusion processes in rat hepatoma cells and other cell lines and effect on formation of functional transport sites. J Membr Biol. 1975 Aug 11;23(1):77–90. doi: 10.1007/BF01870245. [DOI] [PubMed] [Google Scholar]
- Riordan J. R., Alon N. Binding of [3H]ctyochalasin B and [3H]colchicine to isolated liver plasma membranes. Biochim Biophys Acta. 1977 Feb 4;464(3):547–561. doi: 10.1016/0005-2736(77)90029-3. [DOI] [PubMed] [Google Scholar]
- Sanger J. W., Holtzer H. Cytochalasin B: effects on cell morphology, cell adhesion, and mucopolysaccharide synthesis (cultured cells-contractile microfilaments-glycoproteins-embryonic cells-sorting-out). Proc Natl Acad Sci U S A. 1972 Jan;69(1):253–257. doi: 10.1073/pnas.69.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroeder T. E. The contractile ring. I. Fine structure of dividing mammalian (HeLa) cells and the effects of cytochalasin B. Z Zellforsch Mikrosk Anat. 1970;109(4):431–449. [PubMed] [Google Scholar]
- Spudich J. A., Lin S. Cytochalasin B, its interaction with actin and actomyosin from muscle (cell movement-microfilaments-rabbit striated muscle). Proc Natl Acad Sci U S A. 1972 Feb;69(2):442–446. doi: 10.1073/pnas.69.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tannenbaum J., Tanenbaum S. W., Godman G. C. The binding sites of cytochalasin D. I. Evidence that they may be peripheral membrane proteins. J Cell Physiol. 1977 May;91(2):225–237. doi: 10.1002/jcp.1040910208. [DOI] [PubMed] [Google Scholar]
- Tannenbaum J., Tanenbaum S. W., Godman G. C. The binding sites of cytochalasin D. II. Their relationship to hexose transport and to cytochalasin B. J Cell Physiol. 1977 May;91(2):239–248. doi: 10.1002/jcp.1040910209. [DOI] [PubMed] [Google Scholar]
- Taverna R. D., Langdon R. G. Reversible association of cytochalasin B with the human erythrocyte membrane. Inhibition of glucose transport and the stoichiometry of cytochalasin binding. Biochim Biophys Acta. 1973 Oct 11;323(2):207–219. doi: 10.1016/0005-2736(73)90145-4. [DOI] [PubMed] [Google Scholar]
- Taylor N. F., Gagneja G. L. A model for the mode of action of cytochalasin B inhibition of D-glucose transport in the human erythrocyte. Can J Biochem. 1975 Oct;53(10):1078–1084. doi: 10.1139/o75-148. [DOI] [PubMed] [Google Scholar]
- Wessells N. K., Spooner B. S., Ash J. F., Bradley M. O., Luduena M. A., Taylor E. L., Wrenn J. T., Yamada K. Microfilaments in cellular and developmental processes. Science. 1971 Jan 15;171(3967):135–143. doi: 10.1126/science.171.3967.135. [DOI] [PubMed] [Google Scholar]