Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Mar 1;76(3):577–592. doi: 10.1083/jcb.76.3.577

Binding of antibodies to acetylcholine receptors in Electrophorus and Torpedo electroplax membranes

PMCID: PMC2110000  PMID: 344325

Abstract

Antisera against purified acetylcholine receptors from the electric tissues of Torpedo californica and of Electrophorus electricus were raised in rabbits. The antisera contain antibodies which bind to both autologous and heterologous receptors in solution as shown by an immunoprecipitation assay. Antibodies in both types of antisera bind specifically to the postjunctional membrane on the innervated surface of the intact electroplax from Electrophorus electric tissue as demonstrated by an indirect immunohistochemical procedure using horseradish peroxidase conjugated to anti-rabbit IgG. Only anti- Electrophorus receptor antisera, however, cause inhibition of the receptor-mediated depolarization of the intact Electrophorus electroplax. The lack of inhibition by anti-Torpedo receptor antibodies, which do bind, suggests that the receptor does not undergo extensive movement during activity. The binding of anti-Torpedo antibodies to receptor-rich vesicles prepared by subcellular fractionation of Torpedo electric tissue was demonstrated by both direct and indirect immunohistochemical methods using ferritin conjugates. These vesicles can be conveniently collected and prepared for electron microscopy on Millipore filters, a procedure requiring only 25 micrograms of membrane protein per filter. In addition, it was possible to visualize the binding of anti-Torpedo receptor antibodies directly, without ferritin. These anti-Torpedo receptor antibodies, however, do not inhibit the binding of acetylcholine or of alpha- neurotoxin to receptor in Torpedo microsacs but do inhibit binding of alpha-neurotoxin to Torpedo receptor in Triton X-100 solution. It is likely that the principal antigenic determinants on receptor are at sites other than the acetylcholine-binding sites and that inhibition of receptor function, when it occurs, may be due to a stabilization by antibody binding of an inactive conformational state.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albuquerque E. X., Lebeda F. J., Appel S. H., Almon R., Kauffman F. C., Mayer R. F., Narahashi T., Yeh J. Z. Effects of normal and myasthenic serum factors on innervated and chronically denervated mammalian muscles. Ann N Y Acad Sci. 1976;274:475–492. doi: 10.1111/j.1749-6632.1976.tb47709.x. [DOI] [PubMed] [Google Scholar]
  2. Almon R. R., Appel S. H. Serum acetylcholine-receptor antibodies in myasthenia gravis. Ann N Y Acad Sci. 1976;274:235–243. doi: 10.1111/j.1749-6632.1976.tb47689.x. [DOI] [PubMed] [Google Scholar]
  3. Anderson M. J., Cohen M. W. Fluorescent staining of acetylcholine receptors in vertebrate skeletal muscle. J Physiol. 1974 Mar;237(2):385–400. doi: 10.1113/jphysiol.1974.sp010487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bender A. N., Ringel S. P., Engel W. K., Vogel Z., Daniels M. P. Immunoperoxidase localization of alpha bungarotoxin: a new approach to myasthenia gravis. Ann N Y Acad Sci. 1976;274:20–30. doi: 10.1111/j.1749-6632.1976.tb47673.x. [DOI] [PubMed] [Google Scholar]
  5. Bourgeois J. -P., Ryter A., Menez A., Fromageot P., Boquet P., Changeux J. -P. Localization of the cholinergic receptor protein in Electrophorus electroplax by high resolution autoradiography. FEBS Lett. 1972 Sep 1;25(1):127–133. doi: 10.1016/0014-5793(72)80469-1. [DOI] [PubMed] [Google Scholar]
  6. Cohen J. B., Changeux J. P. The cholinergic receptor protein in its membrane environment. Annu Rev Pharmacol. 1975;15:83–103. doi: 10.1146/annurev.pa.15.040175.000503. [DOI] [PubMed] [Google Scholar]
  7. Cohen J. B., Weber M., Huchet M., Changeux J. P. Purification from Torpedo marmorata electric tissue of membrane fragments particularly rich in cholinergic receptor protein. FEBS Lett. 1972 Oct 1;26(1):43–47. doi: 10.1016/0014-5793(72)80538-6. [DOI] [PubMed] [Google Scholar]
  8. Dutton A., Rees E. D., Singer S. J. An experiment eliminating the rotating carrier mechanism for the active transport of Ca ion in sarcoplasmic reticulum membranes. Proc Natl Acad Sci U S A. 1976 May;73(5):1532–1536. doi: 10.1073/pnas.73.5.1532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Engel A. G., Tsujihata M., Lindstrom J. M., Lennon V. A. The motor end plate in myasthenia gravis and in experimental autoimmune myasthenia gravis. A quantitative ultrastructural study. Ann N Y Acad Sci. 1976;274:60–79. doi: 10.1111/j.1749-6632.1976.tb47676.x. [DOI] [PubMed] [Google Scholar]
  10. Fertuck H. C., Salpeter M. M. Quantitation of junctional and extrajunctional acetylcholine receptors by electron microscope autoradiography after 125I-alpha-bungarotoxin binding at mouse neuromuscular junctions. J Cell Biol. 1976 Apr;69(1):144–158. doi: 10.1083/jcb.69.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  12. Karlin A. On the application of "a plausible model" of allosteric proteins to the receptor for acetylcholine. J Theor Biol. 1967 Aug;16(2):306–320. doi: 10.1016/0022-5193(67)90011-2. [DOI] [PubMed] [Google Scholar]
  13. Klett R. P., Fulpius B. W., Cooper D., Smith M., Reich E., Possani L. D. The acetylcholine receptor. I. Purification and characterization of a macromolecule isolated from Electrophorus electricus. J Biol Chem. 1973 Oct 10;248(19):6841–6853. [PubMed] [Google Scholar]
  14. Kyte J. The reactions of sodium and potassium ion-activated adenosine triphosphatase with specific antibodies. Implications for the mechanism of active transport. J Biol Chem. 1974 Jun 10;249(11):3652–3660. [PubMed] [Google Scholar]
  15. Lindstrom J. M., Lennon V. A., Seybold M. E., Whittingham S. Experimental autoimmune myasthenia gravis and myasthenia gravis: biochemical and immunochemical aspects. Ann N Y Acad Sci. 1976;274:254–274. doi: 10.1111/j.1749-6632.1976.tb47691.x. [DOI] [PubMed] [Google Scholar]
  16. Lindstrom J. Immunological studies of acetylcholine receptors. J Supramol Struct. 1976;4(3):389–403. doi: 10.1002/jss.400040310. [DOI] [PubMed] [Google Scholar]
  17. Patrick J., Lindstrom J., Culp B., McMillan J. Studies on purified eel acetylcholine receptor and anti-acetylcholine receptor antibody. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3334–3338. doi: 10.1073/pnas.70.12.3334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rash J. E., Albuquerque E. X., Hudson C. S., Mayer R. F., Satterfield J. R. Studies of human myasthenia gravis: electrophysiological and ultrastructural evidence compatible with antibody attachment to acetylcholine receptor complex. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4584–4588. doi: 10.1073/pnas.73.12.4584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rosenbluth J. Synaptic membrane structure in Torpedo electric organ. J Neurocytol. 1975 Dec;4(6):697–712. doi: 10.1007/BF01181631. [DOI] [PubMed] [Google Scholar]
  20. SCHOFFENIELS E., NACHMANSOHN D. An isolated single electroplax preparation. I. New data on the effect of acetylcholine and related compounds. Biochim Biophys Acta. 1957 Oct;26(1):1–15. doi: 10.1016/0006-3002(57)90047-1. [DOI] [PubMed] [Google Scholar]
  21. Sanders D. B., Schleifer L. S., Eldefrawi M. E., Norcross N. L., Cobb E. E. An immunologically induced defect of neuromuscular transmission in rats and rabbits. Ann N Y Acad Sci. 1976;274:319–336. doi: 10.1111/j.1749-6632.1976.tb47695.x. [DOI] [PubMed] [Google Scholar]
  22. Tarrab-Hazdai R., Aharonov A., Silman I., Fuchs S., Abramsky O. Experimental autoimmune myasthenia induced in monkeys by purified acetylcholine receptor. Nature. 1975 Jul 10;256(5513):128–130. doi: 10.1038/256128a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES