Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Mar 1;76(3):605–614. doi: 10.1083/jcb.76.3.605

Microtubular apparatus of melanophores: three dimensional organization

M Schliwa
PMCID: PMC2110010  PMID: 632321

Abstract

Microtubular organization in the melanophores of the angelfish, Pterophyllum scalare, has been studied by serial thin sectioning. The course of microtubules has been followed in sets of transverse serial sections taken from the centrosphere and a segment of a cell process, respectively. Microtubules arise from a prominent zone in the cell center, the central apparatus, which is composed of numerous, small, electron-dense aggregates. the number of these loosely distributed densities is highest in the center of the centrosphere, but they may also be found at its periphery. Microtubules insert into, or becomes part of, the dense material, or at least start in its vicinity. Dense aggregates may be separated from centrioles by several micrometers rather than only being closely associated with these organelles. At some distance from the organizing zone, most of the microtubules gradually assume a cortical arrangement, i.e., take a course within about 100 nm of the limiting membrane. Serial sections were used to trace all microtubules within a 6μm-long segment of a cell process. 94 percent of the microtubules observed in this segment run its entire length; it is conceivable, therefore that a considerable number of microtubules extend between the initiating site in the centrosphere and the outermost cell region. A three-dimensional model of the 6μm-long segment reveals that, despite changes in the cell process outline, microtubules maintain a strictly cortical arrangement which gives the impression of a microtubule "palisade" lining the cortex of the cell process. The features of the microtubular apparatus of angelfish melanophores are discussed in relation to factors controlling microtubule initiation and distribution.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowers B., Korn E. D. The fine structure of Acanthamoeba castellanii. I. The trophozoite. J Cell Biol. 1968 Oct;39(1):95–111. doi: 10.1083/jcb.39.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fujii R., Novales R. R. Cellular aspects of the control of physiological color changes in fishes. Am Zool. 1969 May;9(2):453–463. doi: 10.1093/icb/9.2.453. [DOI] [PubMed] [Google Scholar]
  3. Gould R. R., Borisy G. G. The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation. J Cell Biol. 1977 Jun;73(3):601–615. doi: 10.1083/jcb.73.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Green L. MECHANISM OF MOVEMENTS OF GRANULES IN MELANOCYTES OF Fundulus heteroclitus. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1179–1186. doi: 10.1073/pnas.59.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Haga T., Abe T., Kurokawa M. Polymerization and depolymerization of microtubules in vitro as studied by flow birefringence. FEBS Lett. 1974 Mar 1;39(3):291–295. doi: 10.1016/0014-5793(74)80133-x. [DOI] [PubMed] [Google Scholar]
  6. Junqueira L. C., Raker E., Porter K. R. Studies on pigment migration in the melanophores of the teleost. Fundulus heteroclitus (L). Arch Histol Jpn. 1974 May;36(5):339–366. doi: 10.1679/aohc1950.36.339. [DOI] [PubMed] [Google Scholar]
  7. Murphy D. B., Tilney L. G. The role of microtubules in the movement of pigment granules in teleost melanophores. J Cell Biol. 1974 Jun;61(3):757–779. doi: 10.1083/jcb.61.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ockleford C. D., Tucker J. B. Growth, breakdown, repair, and rapid contraction of microtubular axopodia in the heliozoan Actinophrys sol. J Ultrastruct Res. 1973 Sep;44(5):369–387. doi: 10.1016/s0022-5320(73)90005-1. [DOI] [PubMed] [Google Scholar]
  9. Olmsted J. B., Borisy G. G. Microtubules. Annu Rev Biochem. 1973;42:507–540. doi: 10.1146/annurev.bi.42.070173.002451. [DOI] [PubMed] [Google Scholar]
  10. Osborn M., Weber K. Cytoplasmic microtubules in tissue culture cells appear to grow from an organizing structure towards the plasma membrane. Proc Natl Acad Sci U S A. 1976 Mar;73(3):867–871. doi: 10.1073/pnas.73.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Porter K. R. Microtubules in intracellular locomotion. Ciba Found Symp. 1973;14:149–169. doi: 10.1002/9780470719978.ch7. [DOI] [PubMed] [Google Scholar]
  12. Reaven E. P., Axline S. G. Subplasmalemmal microfilaments and microtubules in resting and phagocytizing cultivated macrophages. J Cell Biol. 1973 Oct;59(1):12–27. doi: 10.1083/jcb.59.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schliwa M., Bereiter-Hahn J. Pigment movements in fish melanophores: morphological and physiological studies. Z Zellforsch Mikrosk Anat. 1973 Dec 31;147(1):107–125. doi: 10.1007/BF00306603. [DOI] [PubMed] [Google Scholar]
  14. Schliwa M. The role of divalent cations in the regulation of microtubule assembly. In vivo studies on microtubules of the heliozoan axopodium using the ionophore A23187. J Cell Biol. 1976 Sep;70(3):527–540. doi: 10.1083/jcb.70.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stockem W. Die Eignung von Pioloform F für die Herstellung elektronenmikroskopischer Trägerfilme. Mikroskopie. 1970 Sep;26(5):185–189. [PubMed] [Google Scholar]
  16. Warren R. H. Microtubular organization in elongating myogenic cells. J Cell Biol. 1974 Nov;63(2 Pt 1):550–566. doi: 10.1083/jcb.63.2.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weber K., Pollack R., Bibring T. Antibody against tuberlin: the specific visualization of cytoplasmic microtubules in tissue culture cells. Proc Natl Acad Sci U S A. 1975 Feb;72(2):459–463. doi: 10.1073/pnas.72.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wikswo M. A., Novales R. R. Effect of colchicine on microtubules in the melanophores of Fundulus heteroclitus. J Ultrastruct Res. 1972 Nov;41(3):189–201. doi: 10.1016/s0022-5320(72)90063-9. [DOI] [PubMed] [Google Scholar]
  19. Wise G. E. Ultrastructure of amphibian melanophores after light-dark adaptation and hormonal treatment. J Ultrastruct Res. 1969 Jun;27(5):472–485. doi: 10.1016/s0022-5320(69)80045-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES