Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Apr 1;77(1):35–47. doi: 10.1083/jcb.77.1.35

Molecular and biological properties of a macrophage colony-stimulating factor from mouse yolk sacs

PMCID: PMC2110015  PMID: 307001

Abstract

A colony-stimulating factor (M-CSF) has been partially purified and concentrated from mouse yolk sac-conditioned medium (YSCM). M-CSF appeared to preferentially stimulate CBA bone marrow granulocyte- macrophage progenitor cells (GM-CFC) to differentiate to form macrophage colonies in semisolid agar cultures. By comparison, colony- stimulating factor (GM-CSF) from mouse lung-conditioned medium (MLCM) stimulated the formation of granulocytic, mixed granulocytic- macrophage, and pure macrophage colonies. Mixing experiments indicated that both M-CSF and GM-CSF stimulated all of the GM-CFC but that the smaller CFC were more sensitive to GM-CSF and that the larger CFC were more sensitive to M-CSF. Almost all developing "clones" stimulated initially with M-CSF continued to develop when transferred to cultures containing GM-CSF. In the converse situation, only 50% of GM-CSF prestimulated "clones" survived when transferred to cultures containing M-CSF. All clones initially stimulated by M-CSF or transferred to cultures stimulated by M-CSF contained macrophages after 7 days of culture. These results suggest that there is a population of cells (GM- CFC) that are capable of differentiating to form both granulocytes and macrophages, but, once these cells are activated by a specific CSF (e.g. M-CSF), they are committed to a particular differentiation pathway. The pattern of CFC differentiation was not directly related to the rate of proliferation: cultures maximally stimulated by M-CSF produced mostly macrophage colonies, but the presence of small amounts of GM-CSF produced granulocytic cells in 30% of the colonies. Gel filtration, polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, and affinity chromatography with concanavalin A- Sepharose indicated that M-CSF from yolk sacs was a glycoprotein with an apparent molecular weight of 60,000. There was some heterogeneity of the carbohydrate portion of the molecule as evidenced by chromatography on concanavalin A-Sepharose.

Full Text

The Full Text of this article is available as a PDF (903.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradley T. R., Metcalf D. The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci. 1966 Jun;44(3):287–299. doi: 10.1038/icb.1966.28. [DOI] [PubMed] [Google Scholar]
  2. Ichikawa Y., Pluznik D. H., Sachs L. In vitro control of the development of macrophage and granulocyte colonies. Proc Natl Acad Sci U S A. 1966 Aug;56(2):488–495. doi: 10.1073/pnas.56.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  4. Metcalf D., MacDonald H. R. Heterogeneity of in vitro colony- and cluster-forming cells in the mouse marrow: segregation by velocity sedimentation. J Cell Physiol. 1975 Jun;85(3):643–654. doi: 10.1002/jcp.1040850317. [DOI] [PubMed] [Google Scholar]
  5. Miller R. G., Phillips R. A. Separation of cells by velocity sedimentation. J Cell Physiol. 1969 Jun;73(3):191–201. doi: 10.1002/jcp.1040730305. [DOI] [PubMed] [Google Scholar]
  6. ORNSTEIN L. DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY. Ann N Y Acad Sci. 1964 Dec 28;121:321–349. doi: 10.1111/j.1749-6632.1964.tb14207.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES