Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Apr 1;77(1):120–133. doi: 10.1083/jcb.77.1.120

Electron microscope studies of pH effects on assembly of tubulin free of associated proteins. Delineation of substructure by tannic acid staining

PMCID: PMC2110020  PMID: 77862

Abstract

Bovine brain tubulin, purified by phosphocellulose chromatography (PC), was assembled in the presence of 10% dimethyl sulfoxide (DMSO), and the reaction was monitored turbidimetrically. Samples were fixed in glutaraldehyde-tannic acid after completion of polymerization, as indicated by no further change in absorbance, and then sectioned and studied electron microscopy, with special attention being given to the arrangement of protofilaments in the walls of formed elements. Samples of PC-tubulin were polymerized in buffer having various pH values from 6.0 to 7.7. At the lower pH values, only branched and flattened ribbons of protofilaments are formed. At intermediate values, the ribbons are unbranched, narrower, and more curved in cross section; complete microtubules are also seen. At the higher pH values, the predominate formed elements are complete microtubules. Most of the complete microtubules examined in this study had 14 wall protofilaments. The effect of pH on tubulin assembly was shown not to be an effect of DMSO. The dimers of associated protofilaments in ribbons and microtubules are conceptually viewed as having trapezoidal profiles in cross section, and, as additional dimers are added, the "C"-shaped ribbon closes to form a tube. The tilt angle of the lateral surfaces of the "trapezoidal" dimers will determine the number of wall protofilaments in the microtubules. At low pH, it is theorized that the trapezoidal profile of the dimer is shifted to a more rectangular configuration such that flat ribbons are formed by the lateral association of dimers. Also, variously shaped ribbon structures are formed at intermediate pH values, including "S"- and "W"-shaped structures, and elements shaped like a figure "6," all representing ribbons viewed in cross section. By visualizing the trapezoidal dimer in three-dimensions, and by arbitrarily indexing its six binding surfaces, it is possible to discuss interdimer binding in terms of preferred and possible binding interactions.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen C., Borisy G. G. Structural polarity and directional growth of microtubules of Chlamydomonas flagella. J Mol Biol. 1974 Dec 5;90(2):381–402. doi: 10.1016/0022-2836(74)90381-7. [DOI] [PubMed] [Google Scholar]
  2. Binder L. I., Dentler W. L., Rosenbaum J. L. Assembly of chick brain tubulin onto flagellar microtubules from Chlamydomonas and sea urchin sperm. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1122–1126. doi: 10.1073/pnas.72.3.1122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borisy G. G., Marcum J. M., Olmsted J. B., Murphy D. B., Johnson K. A. Purification of tubulin and associated high molecular weight proteins from porcine brain and characterization of microtubule assembly in vitro. Ann N Y Acad Sci. 1975 Jun 30;253:107–132. doi: 10.1111/j.1749-6632.1975.tb19196.x. [DOI] [PubMed] [Google Scholar]
  4. Borisy G. G., Olmsted J. B. Nucleated assembly of microtubules in porcine brain extracts. Science. 1972 Sep 29;177(4055):1196–1197. doi: 10.1126/science.177.4055.1196. [DOI] [PubMed] [Google Scholar]
  5. Bryan J. A quantitative analysis of microtubule elongation. J Cell Biol. 1976 Dec;71(3):749–767. doi: 10.1083/jcb.71.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dentler W. L., Granett S., Witman G. B., Rosenbaum J. L. Directionality of brain microtubule assembly in vitro. Proc Natl Acad Sci U S A. 1974 May;71(5):1710–1714. doi: 10.1073/pnas.71.5.1710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Himes R. H., Burton P. R., Gaito J. M. Dimethyl sulfoxide-induced self-assembly of tubulin lacking associated proteins. J Biol Chem. 1977 Sep 10;252(17):6222–6228. [PubMed] [Google Scholar]
  8. Himes R. H., Burton P. R., Kersey R. N., Pierson G. B. Brain tubulin polymerization in the absence of "microtubule-associated proteins". Proc Natl Acad Sci U S A. 1976 Dec;73(12):4397–4399. doi: 10.1073/pnas.73.12.4397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Keates R. A., Hall R. H. Tubulin requires an accessory protein for self assembly in microtubules. Nature. 1975 Oct 2;257(5525):418–421. doi: 10.1038/257418a0. [DOI] [PubMed] [Google Scholar]
  10. Kirschner M. W., Honig L. S., Williams R. C. Quantitative electron microscopy of microtubule assembly in vitro. J Mol Biol. 1975 Dec 5;99(2):263–276. doi: 10.1016/s0022-2836(75)80144-6. [DOI] [PubMed] [Google Scholar]
  11. Kirschner M. W., Williams R. C., Weingarten M., Gerhart J. C. Microtubules from mammalian brain: some properties of their depolymerization products and a proposed mechanism of assembly and disassembly. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1159–1163. doi: 10.1073/pnas.71.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee J. C., Timasheff S. N. The reconstitution of microtubules from purified calf brain tubulin. Biochemistry. 1975 Nov 18;14(23):5183–5187. doi: 10.1021/bi00694a025. [DOI] [PubMed] [Google Scholar]
  13. Matsumura F., Hayashi M. Polymorphism of tubulin assembly. In vitro formation of sheet, twisted ribbon and microtubule. Biochim Biophys Acta. 1976 Nov 26;453(1):162–175. doi: 10.1016/0005-2795(76)90260-9. [DOI] [PubMed] [Google Scholar]
  14. Murphy D. B., Borisy G. G. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2696–2700. doi: 10.1073/pnas.72.7.2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Olmsted J. B., Marcum J. M., Johnson K. A., Allen C., Borisy G. G. Microtuble assembly: some possible regulatory mechanisms. J Supramol Struct. 1974;2(2-4):429–450. doi: 10.1002/jss.400020230. [DOI] [PubMed] [Google Scholar]
  16. Pierson G. B., Burton P. R., Himes R. H. Alterations in number of protofilaments in microtubules assembled in vitro. J Cell Biol. 1978 Jan;76(1):223–228. doi: 10.1083/jcb.76.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rosenbaum J. L., Binder L. I., Granett S., Dentler W. L., Snell W., Sloboda R., Haimo L. Directionality and rate of assembly of chick brain tubulin onto pieces of neurotubules, flagellar axonemes, and basal bodies. Ann N Y Acad Sci. 1975 Jun 30;253:147–177. doi: 10.1111/j.1749-6632.1975.tb19198.x. [DOI] [PubMed] [Google Scholar]
  18. Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tilney L. G., Bryan J., Bush D. J., Fujiwara K., Mooseker M. S., Murphy D. B., Snyder D. H. Microtubules: evidence for 13 protofilaments. J Cell Biol. 1973 Nov;59(2 Pt 1):267–275. doi: 10.1083/jcb.59.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Witman G. B. The site of in vivo assembly of flagellar microtubules. Ann N Y Acad Sci. 1975 Jun 30;253:178–191. doi: 10.1111/j.1749-6632.1975.tb19199.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES