Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Apr 1;77(1):14–34. doi: 10.1083/jcb.77.1.14

Structure of cortical microtubule arrays in plant cells

PMCID: PMC2110024  PMID: 350889

Abstract

Serial sectioning was used to track the position and measure the lengths of cortical microtubules in glutaraldehyde-osmium tetroxide- fixed root tip cells. Microtubules lying against the longitudinal walls during interphase, those overlying developing xylem thickenings, and those in pre-prophase bands are oriented circumferentially but on average are only about one-eighth of the cell circumference in length, i.e., 2-4 micrometer. The arrays consist of overlapping component microtubules, interconnected by cross bridges where they are grouped and also connected to the plasma membrane. Microtubule lengths vary greatly in any given array, but the probability that any pass right around the cell is extremely low. The majority of the microtubule terminations lie in statistically random positions in the arrays, but nonrandomness in the form of groups of terminations and terminations in short lines parallel to the axis of cell elongation has been observed. Low temperature induces microtubule shortening and increases the frequency of C-shaped terminations over the 1.7% found under normal conditions; colchicine and high pressures produce abnormally large proportions of very short microtubules amongst those that survive the treatments. Deuterium oxide (D2O) treatment probably induces the formation of additional microtubules as distinct from increasing the length of those already present. The distribution of C-shaped terminations provides evidence for at least local polarity in the arrays. The validity of the findings is discussed, along with implications for the development, maintenance, and orientation of the arrays and their possible relationship to the orientation of cellulose deposition.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behnke O. Incomplete microtubules observed in mammalian blood platelets during microtubule polymerization. J Cell Biol. 1967 Aug;34(2):697–701. doi: 10.1083/jcb.34.2.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bouck G. B., Brown D. L. Microtubule biogenesis and cell shape in Ochromonas. I. The distribution of cytoplasmic and mitotic microtubules. J Cell Biol. 1973 Feb;56(2):340–359. doi: 10.1083/jcb.56.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown D. L., Bouck G. B. Microtubule biogenesis and cell shape in Ochromonas. II. The role of nucleating sites in shape development. J Cell Biol. 1973 Feb;56(2):360–378. doi: 10.1083/jcb.56.2.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bryan J. A quantitative analysis of microtubule elongation. J Cell Biol. 1976 Dec;71(3):749–767. doi: 10.1083/jcb.71.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burgess J., Northcote D. H. Action of colchicine and heavy water on the polymerization of microtubules in wheat root meristem. J Cell Sci. 1969 Sep;5(2):433–451. doi: 10.1242/jcs.5.2.433. [DOI] [PubMed] [Google Scholar]
  6. Cohen W. D., Gottlieb T. C-microtubules in isolated mitotic spindles. J Cell Sci. 1971 Nov;9(3):603–619. doi: 10.1242/jcs.9.3.603. [DOI] [PubMed] [Google Scholar]
  7. Dentler W. L., Granett S., Witman G. B., Rosenbaum J. L. Directionality of brain microtubule assembly in vitro. Proc Natl Acad Sci U S A. 1974 May;71(5):1710–1714. doi: 10.1073/pnas.71.5.1710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Detrich H. W., 3rd, Berkowitz A., Kim H., Williams R. C., Jr Binding of glycerol by microtubule protein. Biochem Biophys Res Commun. 1976 Feb 9;68(3):961–968. doi: 10.1016/0006-291x(76)91239-0. [DOI] [PubMed] [Google Scholar]
  9. Goode D. Kinetics of microtubule formation after cold disaggregation of the mitotic apparatus. J Mol Biol. 1973 Nov 5;80(3):531–538. doi: 10.1016/0022-2836(73)90420-8. [DOI] [PubMed] [Google Scholar]
  10. Heath I. B. A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J Theor Biol. 1974 Dec;48(2):445–449. doi: 10.1016/s0022-5193(74)80011-1. [DOI] [PubMed] [Google Scholar]
  11. Heath I. B., Heath M. C. Ultrastructure of mitosis in the cowpea rust fungus Uromyces phaseoli var. Vignae. J Cell Biol. 1976 Sep;70(3):592–607. doi: 10.1083/jcb.70.3.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heath I. B. Mitosis in the fungus Thraustotheca clavata. J Cell Biol. 1974 Jan;60(1):204–220. doi: 10.1083/jcb.60.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kirschner M. W., Honig L. S., Williams R. C. Quantitative electron microscopy of microtubule assembly in vitro. J Mol Biol. 1975 Dec 5;99(2):263–276. doi: 10.1016/s0022-2836(75)80144-6. [DOI] [PubMed] [Google Scholar]
  14. Mc2ntosh J. R., Cande Z., Snyder J., Vanderslice K. Studies on the mechanism of mitosis. Ann N Y Acad Sci. 1975 Jun 30;253:407–427. doi: 10.1111/j.1749-6632.1975.tb19217.x. [DOI] [PubMed] [Google Scholar]
  15. Northcote D. H., Lewis D. R. Freeze-etched surfaces of membranes and organelles in the cells of pea root tips. J Cell Sci. 1968 Jun;3(2):199–206. doi: 10.1242/jcs.3.2.199. [DOI] [PubMed] [Google Scholar]
  16. Packard M. J., Stack S. M. The preprophase band: possible involvement in the formation of the cell wall. J Cell Sci. 1976 Nov;22(2):403–411. doi: 10.1242/jcs.22.2.403. [DOI] [PubMed] [Google Scholar]
  17. Roth L. E., Shigenaka Y. Microtubules in the heliozoan axopodium. II. Rapid degradation by cupric and nickelous ions. J Ultrastruct Res. 1970 May;31(3):356–374. doi: 10.1016/s0022-5320(70)90138-3. [DOI] [PubMed] [Google Scholar]
  18. Salmon E. D., Goode D., Maugel T. K., Bonar D. B. Pressure-induced depolymerization of spindle microtubules. III. Differential stability in HeLa cells. J Cell Biol. 1976 May;69(2):443–454. doi: 10.1083/jcb.69.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sloboda R. D., Dentler W. L., Rosenbaum J. L. Microtubule-associated proteins and the stimulation of tubulin assembly in vitro. Biochemistry. 1976 Oct 5;15(20):4497–4505. doi: 10.1021/bi00665a026. [DOI] [PubMed] [Google Scholar]
  21. Snyder J. A., McIntosh J. R. Biochemistry and physiology of microtubules. Annu Rev Biochem. 1976;45:699–720. doi: 10.1146/annurev.bi.45.070176.003411. [DOI] [PubMed] [Google Scholar]
  22. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  23. Stephens R. E. A thermodynamic analysis of mitotic spindle equilibrium at active metaphase. J Cell Biol. 1973 Apr;57(1):133–147. doi: 10.1083/jcb.57.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Warren R. H. Microtubular organization in elongating myogenic cells. J Cell Biol. 1974 Nov;63(2 Pt 1):550–566. doi: 10.1083/jcb.63.2.550. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES