Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Apr 1;77(1):246–263. doi: 10.1083/jcb.77.1.246

Structure of interphase nuclei in relation to the cell cycle. Chromatin organization in mouse L cells temperature-sensitive for DNA replication

PMCID: PMC2110034  PMID: 659512

Abstract

Mutant lines of mouse L cells, TS A1S9, and TS C1, show temperature- sensitive (TS) DNA synthesis and cell division when shifted from 34 degrees to 38.5 degrees C. With TS A1S9 the decline in DNA synthesis begins after 6-8 h at 38.5 degrees C and is most marked at about 24 h. Most cells in S, G2, or M at temperature upshift complete one mitosis and accumulate in the subsequent interphase at G1 or early S as a result of expression of a primary defect, failure of elongation of newly made small DNA fragments. Heat inactivation of TS C1 cells is more rapid; they fail to complete the interphase in progress at temperature upshift and accumulate at late S or G2. Inhibition of both cell types is reversible on return to 34 degrees C. Cell and nuclear growth continues during inhibition of replication. Expression of both TS mutations leads to a marked change in gross organization of chromatin as revealed by electron microscopy. Nuclei of wild-type cells at 34 degrees and 38.5 degrees C and mutant cells at 34 degrees C show a range of aggregation of condensed chromatin from small dispersed bodies to large discrete clumps, with the majority in an intermediate state. In TS cells at 38.5 degrees C, condensed chromatin bodies in the central nuclear region become disaggregated into small clumps dispersed through the nucleus. Morphometric estimation of volume of condensed chromatin indicates that this process is not due to complete decondensation of chromatin fibrils, but rather involves dispersal of large condensed chromatin bodies into finer aggregates and loosening of fibrils within the aggregates. The dispersed condition is reversed in nuclei which resume DNA synthesis when TS cells are downshifted from 38.5 degrees to 34 degrees C. The morphological observations are consistent with the hypothesis that condensed chromatin normally undergoes an ordered cycle of transient, localized disaggregation and reaggregation associated with replication. In temperature-inactivated mutants, normal progressive disaggregation presumably occurs, but subsequent lack of chromatin replication prevents reaggregation.

Full Text

The Full Text of this article is available as a PDF (4.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez Y., Valladares Y. Differential staining of the cell cycle. Nat New Biol. 1972 Aug 30;238(87):279–280. doi: 10.1038/newbio238279a0. [DOI] [PubMed] [Google Scholar]
  2. Back F. The variable condition of euchromatin and heterochromatin. Int Rev Cytol. 1976;45:25–64. doi: 10.1016/s0074-7696(08)60077-7. [DOI] [PubMed] [Google Scholar]
  3. Barlow P. W. Changes in chromatin structure during the mitotic cycle. Protoplasma. 1977;91(2):207–211. doi: 10.1007/BF01276735. [DOI] [PubMed] [Google Scholar]
  4. Barlow P. W. The relationship of the dispersion phase of chromocentric nuclei in the mitotic cycle to DNA synthesis. Protoplasma. 1976;90(3-4):381–392. doi: 10.1007/BF01275688. [DOI] [PubMed] [Google Scholar]
  5. Brasch K., Setterfield G., Neelin J. M. Effects of sequential extraction of histone proteins on structural organization of avian erythrocyte and liver nuclei. Exp Cell Res. 1972 Sep;74(1):27–41. doi: 10.1016/0014-4827(72)90478-8. [DOI] [PubMed] [Google Scholar]
  6. Brasch K., Setterfield G. Structural organization of chromosomes in interphase nuclei. Exp Cell Res. 1974 Jan;83(1):175–185. doi: 10.1016/0014-4827(74)90701-0. [DOI] [PubMed] [Google Scholar]
  7. Comings D. E. Sex chromatin, nuclear size and the cell cycle. Cytogenetics. 1967;6(2):120–144. doi: 10.1159/000129934. [DOI] [PubMed] [Google Scholar]
  8. Comings D. E. The duration of replication of the inactive X chromosome in humans based on the persistence of the heterochromatic sex chromatin body during DNA synthesis. Cytogenetics. 1967;6(1):20–37. doi: 10.1159/000129927. [DOI] [PubMed] [Google Scholar]
  9. Comings D. E. The rationale for an ordered arrangement of chromatin in the interphase nucleus. Am J Hum Genet. 1968 Sep;20(5):440–460. [PMC free article] [PubMed] [Google Scholar]
  10. Crissman H. A., Mullaney P. F., Steinkamp J. A. Methods and applications of flow systems for analysis and sorting of mammalian cells. Methods Cell Biol. 1975;9(0):179–246. doi: 10.1016/s0091-679x(08)60076-x. [DOI] [PubMed] [Google Scholar]
  11. Dardick I., Setterfield G. Volume of condensed chromatin in developing primitive-line erythrocytes of chick. Exp Cell Res. 1976 Jun;100(1):159–171. doi: 10.1016/0014-4827(76)90338-4. [DOI] [PubMed] [Google Scholar]
  12. Edenberg H. J., Huberman J. A. Eukaryotic chromosome replication. Annu Rev Genet. 1975;9:245–284. doi: 10.1146/annurev.ge.09.120175.001333. [DOI] [PubMed] [Google Scholar]
  13. Erlandson R. A., de Harven E. The ultrastructure of synchronized HeLa cells. J Cell Sci. 1971 Mar;8(2):353–397. doi: 10.1242/jcs.8.2.353. [DOI] [PubMed] [Google Scholar]
  14. Fakan S., Hancock R. Localization of newly-synthesized DNA in a mammalian cell as visualized by high resolution autoradiography. Exp Cell Res. 1974 Jan;83(1):95–102. doi: 10.1016/0014-4827(74)90692-2. [DOI] [PubMed] [Google Scholar]
  15. Finch J. T., Klug A. Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1897–1901. doi: 10.1073/pnas.73.6.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hand R. Regulation of DNA replication on subchromosomal units of mammalian cells. J Cell Biol. 1975 Jan;64(1):89–97. doi: 10.1083/jcb.64.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnson R. T., Mullinger A. M. The induction of DNA synthesis in the chick red cell nucleus in heterokaryons during the first cell cycle after fusion with HeLa cells. J Cell Sci. 1975 Aug;18(3):455–490. doi: 10.1242/jcs.18.3.455. [DOI] [PubMed] [Google Scholar]
  18. Klinger H. P., Schwarzacher H. G., Weiss J. DNA content and size of sex chromatin positive female nuclei during the cell cycle. Cytogenetics. 1967;6(1):1–19. doi: 10.1159/000129926. [DOI] [PubMed] [Google Scholar]
  19. Lafontaine J. G., Lord A. An ultrastructural and radioautographic study of the evolution of the interphase nucleus in plant meristematic cells (Allium porrum). J Cell Sci. 1974 Mar;14(2):263–287. doi: 10.1242/jcs.14.2.263. [DOI] [PubMed] [Google Scholar]
  20. Lee J. C., Yunis J. J. Cytological variations in the constitutive heterochromatin of Microtus agrestis. Chromosoma. 1971;35(2):117–124. doi: 10.1007/BF00285732. [DOI] [PubMed] [Google Scholar]
  21. Lord A., Lafontaine J. G. An ultrastructural and radioautographic study of the chromocentric interphase nucleus in plant meristematic cells (Raphanus sativus). J Cell Sci. 1976 Jun;21(1):193–207. doi: 10.1242/jcs.21.1.193. [DOI] [PubMed] [Google Scholar]
  22. MAZIA D. SYNTHETIC ACTIVITIES LEADING TO MITOSIS. J Cell Physiol. 1963 Oct;62:SUPPL1–SUPPL1:140. doi: 10.1002/jcp.1030620412. [DOI] [PubMed] [Google Scholar]
  23. Martin R. F., Radford I., Pardee M. Accumulation of short DNA fragments in hydroxyurea treated mouse L-cells. Biochem Biophys Res Commun. 1977 Jan 10;74(1):9–15. doi: 10.1016/0006-291x(77)91368-7. [DOI] [PubMed] [Google Scholar]
  24. Milner G. R. Nuclear morphology and the ultrastructural localization of deoxyribonucleic acid synthesis during interphase. J Cell Sci. 1969 May;4(3):569–582. doi: 10.1242/jcs.4.3.569. [DOI] [PubMed] [Google Scholar]
  25. Nicolini C., Ajiro K., Borun T. W., Baserga R. Chromatin changes during the cell cycle of HeHa cells. J Biol Chem. 1975 May 10;250(9):3381–3385. [PubMed] [Google Scholar]
  26. Olins A. L., Senior M. B., Olins D. E. Ultrastructural features of chromatin nu bodies. J Cell Biol. 1976 Mar;68(3):787–793. doi: 10.1083/jcb.68.3.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Oudet P., Gross-Bellard M., Chambon P. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell. 1975 Apr;4(4):281–300. doi: 10.1016/0092-8674(75)90149-x. [DOI] [PubMed] [Google Scholar]
  28. Pederson T. Chromatin structure and the cell cycle. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2224–2228. doi: 10.1073/pnas.69.8.2224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pederson T., Robbins E. Chromatin structure and the cell division cycle. Actinomycin binding in synchronized HeLa cells. J Cell Biol. 1972 Nov;55(2):322–327. doi: 10.1083/jcb.55.2.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ringertz N. R., Ericsson J. L., Nilsson O. Macronuclear chromatin structure in Euplotes. Exp Cell Res. 1967 Oct;48(1):97–117. doi: 10.1016/0014-4827(67)90280-7. [DOI] [PubMed] [Google Scholar]
  31. STANNERS C. P., TILL J. E. DNA synthesis in individual L-strain mouse cells. Biochim Biophys Acta. 1960 Jan 29;37:406–419. doi: 10.1016/0006-3002(60)90496-0. [DOI] [PubMed] [Google Scholar]
  32. Sawicki W., Rowiński J., Swenson R. Change of chromatin morphology during the cell cycle detected by means of automated image analysis. J Cell Physiol. 1974 Dec;84(3):423–428. doi: 10.1002/jcp.1040840310. [DOI] [PubMed] [Google Scholar]
  33. Sheinin Polyoma and cell DNA synthesis in mouse L cells temperature sensitive for the replication of cell DNA. J Virol. 1976 Mar;17(3):692–704. doi: 10.1128/jvi.17.3.692-704.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sheinin R. Preliminary characterization of the temperature-sensitive defect in DNA replication in a mutant mouse L cell. Cell. 1976 Jan;7(1):49–57. doi: 10.1016/0092-8674(76)90254-3. [DOI] [PubMed] [Google Scholar]
  35. Tokuyasu K., Madden S. C., Zeldis L. J. Fine structural alterations of interphase nuclei of lymphocytes stimulated to grwoth activity in vitro. J Cell Biol. 1968 Dec;39(3):630–660. doi: 10.1083/jcb.39.3.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wunderlich F., Herlan G. Reversibly contractile nuclear matrix. Its isolation, structure, and composition. J Cell Biol. 1977 May;73(2):271–278. doi: 10.1083/jcb.73.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES