Abstract
The "tailed" molecules of Electrophorus (electric eel) acetylcholinesterase aggregate under conditions of low ionic strength. These aggregates have been studied by sedimentation analysis and high- resolution electron microscopy. They consist of bundles of at least half a dozen molecules, the tails of which are packed side by side, to form the core of the structure. Although aggregation is normally fully reversible, aggregates were irreversibly stabilized by methylene blue- sensitized photo-oxidation. This process was shown to consist of a singlet oxygen oxidation reaction and probably involves methionine or histidine residues. It did not modify the structural or hydrodynamic characteristics of the aggregates.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anglister L., Rogozinski S., Silman I. Detection of hydroxyproline in preparations of acetylcholinesterase from the electric organ of the electric eel. FEBS Lett. 1976 Oct 15;69(1):129–132. doi: 10.1016/0014-5793(76)80668-0. [DOI] [PubMed] [Google Scholar]
- Bailey A. J., Robins S. P., Balian G. Biological significance of the intermolecular crosslinks of collagen. Nature. 1974 Sep 13;251(5471):105–109. doi: 10.1038/251105a0. [DOI] [PubMed] [Google Scholar]
- Bon S., Huet M., Lemonnier M., Rieger F., Massoulié J. Molecular forms of Electrophorus acetylcholinesterase. Molecular weight and composition. Eur J Biochem. 1976 Sep 15;68(2):523–530. doi: 10.1111/j.1432-1033.1976.tb10840.x. [DOI] [PubMed] [Google Scholar]
- Bon S., Massoulié J. An active monomeric form of Electrophorus electricus acetylcholinesterase. FEBS Lett. 1976 Aug 1;67(1):99–103. doi: 10.1016/0014-5793(76)80878-2. [DOI] [PubMed] [Google Scholar]
- Bon S., Massoulié J. Molecular forms of Electrophorus acetylcholinesterase the catalytic subunits: fragmentation, intra- and inter-subunit disulfide bonds. FEBS Lett. 1976 Dec 1;71(2):273–278. doi: 10.1016/0014-5793(76)80949-0. [DOI] [PubMed] [Google Scholar]
- Bon S., Rieger F., Massoulié J. Propriétés des formes allongées de l'acétylcholinestérase en solution. Rayon de Stokes, densité et masse. Eur J Biochem. 1973 Jun;35(2):372–379. doi: 10.1111/j.1432-1033.1973.tb02849.x. [DOI] [PubMed] [Google Scholar]
- Cartaud J., Rieger F., Bon S., Massoulie J. Fine structure of electric ell acetylcholinesterase. Brain Res. 1975 Apr 25;88(1):127–130. doi: 10.1016/0006-8993(75)90959-2. [DOI] [PubMed] [Google Scholar]
- Dudai Y., Herzberg M., Silman I. Molecular structures of acetylcholinesterase from electric organ tissue of the electric eel. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2473–2476. doi: 10.1073/pnas.70.9.2473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
- Leberman R. Use of uranyl formate as a negative stain. J Mol Biol. 1965 Sep;13(2):606–606. doi: 10.1016/s0022-2836(65)80124-3. [DOI] [PubMed] [Google Scholar]
- Lwebuga-Mukasa J. S., Lappi S., Taylor P. Molecular forms of acetylcholinesterase from Torpedo californica: their relationship to synaptic membranes. Biochemistry. 1976 Apr 6;15(7):1425–1434. doi: 10.1021/bi00652a012. [DOI] [PubMed] [Google Scholar]
- Marshall L. M., Sanes J. R., McMahan U. J. Reinnervation of original synaptic sites on muscle fiber basement membrane after disruption of the muscle cells. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3073–3077. doi: 10.1073/pnas.74.7.3073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Massoulié J., Bon S. Affinity chromatography of acetylcholinesterase. The importance of hydrophobic interactions. Eur J Biochem. 1976 Sep 15;68(2):531–539. doi: 10.1111/j.1432-1033.1976.tb10841.x. [DOI] [PubMed] [Google Scholar]
- Massoulié J., Rieger F. L'acétylcholinestérase des organes électriques de poissons (torpille et gymnote); complexes membranaires. Eur J Biochem. 1969 Dec;11(3):441–455. doi: 10.1111/j.1432-1033.1969.tb00794.x. [DOI] [PubMed] [Google Scholar]
- McMahan U. J., Sanes J. R., Marshall L. M. Cholinesterase is associated with the basal lamina at the neuromuscular junction. Nature. 1978 Jan 12;271(5641):172–174. doi: 10.1038/271172a0. [DOI] [PubMed] [Google Scholar]
- Nilsson R., Merkel P. B., Kearns D. R. Unambiguous evidence for the participation of singlet oxygen ( 1 ) in photodynamic oxidation of amino acids. Photochem Photobiol. 1972 Aug;16(2):117–124. doi: 10.1111/j.1751-1097.1972.tb07343.x. [DOI] [PubMed] [Google Scholar]
- Rieger F., Bon S., Massoulié J. Observation par microscopie électronique des formes allongées et globulaires de l'acétylcholinestérase de gymnote (Electrophorus electricus. Eur J Biochem. 1973 May 2;34(3):539–547. doi: 10.1111/j.1432-1033.1973.tb02792.x. [DOI] [PubMed] [Google Scholar]
- Rieger F., Bon S., Massoulié J. Phospholipids in "native" Electrophorus acetylcholinesterase. FEBS Lett. 1973 Oct 1;36(1):12–16. doi: 10.1016/0014-5793(73)80326-6. [DOI] [PubMed] [Google Scholar]