Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 May 1;77(2):439–447. doi: 10.1083/jcb.77.2.439

Actin in xenopus oocytes: II. intracellular distribution and polymerizability

RW Merriam, TG Clark
PMCID: PMC2110040  PMID: 565782

Abstract

The largest oocytes of Xenopus Laevis were broken open in the absence of shearing forces which might transfer actin from particulate to supernatant fractions. Particulate and postmitochondrial supernatant fractions were prepared by centrifugation. SDS-electrophoretic fractionation on polyacrylamide gels and quantitative scanning techniques were used to separate actin and to assay its amount in cellular fractions. The actin has been identified in electrophoretograms by its molecular weight and its binding to DNase I. oocytes contain 1.4-1.7 {um}g of actin per cell, of which up to 88 percent is recovered in the postmitochondrial supernate under a variety of conditions. In the soluble fraction, it represents about 8.8 percent of the total protein. Its concentration in native cytoplasm was directly assayed at 4.1 mg/ml. There is no detectable actin that can be transferred from the particulate to the soluble phase by neutral detergents or ionic conditions that would depolymerize muscle actin. Centrifugation of the soluble oocyte fractions showed that 75-95 percent of the actin can not be sedimented under forces that would pellet filamentous actin. Addition of potassium and magnesium to the cytoplasm, to concentrations that would polymerize muscle actin, does not increase the amount of sedimentable actin. Roughly one-third of the soluble actin is recovered from Sephadex columns at about the position of monomer. About two- thirds is in complexes of 100,000 daltons or greater.

Full Text

The Full Text of this article is available as a PDF (754.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Booyse F. M., Hoveke T. P., Rafelson M. E., Jr Human platelet actin. Isolation and properties. J Biol Chem. 1973 Jun 10;248(11):4083–4091. [PubMed] [Google Scholar]
  2. Bray D., Thomas C. The actin content of fibroblasts. Biochem J. 1975 May;147(2):221–228. doi: 10.1042/bj1470221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bray D., Thomas C. Unpolymerized actin in fibroblasts and brain. J Mol Biol. 1976 Aug 25;105(4):527–544. doi: 10.1016/0022-2836(76)90233-3. [DOI] [PubMed] [Google Scholar]
  4. Century T. J., Fenichel I. R., Horowitz S. B. The concentrations of water, sodium and potassium in the nucleus and cytoplasm of amphibian oocytes. J Cell Sci. 1970 Jul;7(1):5–13. doi: 10.1242/jcs.7.1.5. [DOI] [PubMed] [Google Scholar]
  5. Clark T. G., Merriam R. W. Actin in Xenopus oocytes. J Cell Biol. 1978 May;77(2):427–438. doi: 10.1083/jcb.77.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Comly L. T. Microfilaments in Chaos carolinensis. Membrane association, distribution, and heavy meromyosin binding in the glycerinated cell. J Cell Biol. 1973 Jul;58(1):230–237. doi: 10.1083/jcb.58.1.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coyne B., Rosenbaum J. L. Flagellar elongation and shortening in chlamydomonas. II. Re-utilization of flagellar proteins. J Cell Biol. 1970 Dec;47(3):777–781. doi: 10.1083/jcb.47.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dumont J. N. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol. 1972 Feb;136(2):153–179. doi: 10.1002/jmor.1051360203. [DOI] [PubMed] [Google Scholar]
  9. Elzinga M., Maron B. J., Adelstein R. S. Human heart and platelet actins are products of different genes. Science. 1976 Jan 9;191(4222):94–95. doi: 10.1126/science.1246600. [DOI] [PubMed] [Google Scholar]
  10. Franke W. W., Rathke P. C., Seib E., Trendelenburg M. F., Osborn M., Weber K. Distribution and mode of arrangement of microfilamentous structures and actin in the cortex of the amphibian oocyte. Cytobiologie. 1976 Dec;14(1):111–130. [PubMed] [Google Scholar]
  11. Gruenstein E., Rich A. Non-identity of muscle and non-muscle actins. Biochem Biophys Res Commun. 1975 May 19;64(2):472–477. doi: 10.1016/0006-291x(75)90345-9. [DOI] [PubMed] [Google Scholar]
  12. HANSON J., HUXLEY H. E. Quantitative studies on the structure of cross-striated myofibrils. II. Investigations by biochemical techniques. Biochim Biophys Acta. 1957 Feb;23(2):250–260. doi: 10.1016/0006-3002(57)90326-8. [DOI] [PubMed] [Google Scholar]
  13. Kane R. E. Actin polymerization and interaction with other proteins in temperature-induced gelation of sea urchin egg extracts. J Cell Biol. 1976 Dec;71(3):704–714. doi: 10.1083/jcb.71.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kane R. E. Preparation and purification of polymerized actin from sea urchin egg extracts. J Cell Biol. 1975 Aug;66(2):305–315. doi: 10.1083/jcb.66.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. LOWY J., MCDONOUGH M. W. STRUCTURE OF FILAMENTS PRODUCED BY RE-AGGREGATION OF SALMONELLA FLAGELLIN. Nature. 1964 Oct 10;204:125–127. doi: 10.1038/204125a0. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Merriam R. W., Hill R. J. The germinal vesicle nucleus of Xenopus laevis oocytes as a selective storage receptacle for proteins. J Cell Biol. 1976 Jun;69(3):659–668. doi: 10.1083/jcb.69.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miki-Noumura T., Oosawa F. An actin-like protein of the sea urchin eggs. I. Its interaction with myosin from rabbit striated muscle. Exp Cell Res. 1969 Aug;56(2):224–232. doi: 10.1016/0014-4827(69)90006-8. [DOI] [PubMed] [Google Scholar]
  20. Morrill G. A. Water and electrolyte changes in amphibian eggs at ovulation. Exp Cell Res. 1965 Dec;40(3):664–667. doi: 10.1016/0014-4827(65)90245-4. [DOI] [PubMed] [Google Scholar]
  21. Pardee J. D., Bamburg J. R. Quantitation of actin in developing brain. J Neurochem. 1976 Jun;26(6):1093–1098. doi: 10.1111/j.1471-4159.1976.tb06991.x. [DOI] [PubMed] [Google Scholar]
  22. Perry M. M., John H. A., Thomas N. S. Actin-like filaments in the cleavage furrow of newt egg. Exp Cell Res. 1971 Mar;65(1):249–253. doi: 10.1016/s0014-4827(71)80075-7. [DOI] [PubMed] [Google Scholar]
  23. Pollard T. D., Korn E. D. Filaments of Amoeba proteus. II. Binding of heavy meromyosin by thin filaments in motile cytoplasmic extracts. J Cell Biol. 1971 Jan;48(1):216–219. doi: 10.1083/jcb.48.1.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
  25. Schorderet-Slatkine S., Drury K. C. Progesterone induced maturation in oocytes of Xenopus laevis. Appearance of a 'maturation promoting factor' in enucleated oocytes. Cell Differ. 1973 Oct;2(4):247–254. doi: 10.1016/0045-6039(73)90013-4. [DOI] [PubMed] [Google Scholar]
  26. Storti R. V., Coen D. M., Rich A. Tissue-specific forms of actin in the developing chick. Cell. 1976 Aug;8(4):521–527. doi: 10.1016/0092-8674(76)90220-8. [DOI] [PubMed] [Google Scholar]
  27. Tilney L. G. The polymerization of actin. III. Aggregates of nonfilamentous actin and its associated proteins: a storage form of actin. J Cell Biol. 1976 Apr;69(1):73–89. doi: 10.1083/jcb.69.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES