Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 May 1;77(2):551–564.

polymerization of actin: v.a new organelle, the actomere, that initiates the assembly of actin filaments in thyone sperm

PMCID: PMC2110041  PMID: 25902

Abstract

Between the acrosomal vacuole and the nucleus is a cup of amorphous material (profilactin) which is transformed into filaments during the acrosomal reaction. In the center of this cup in untreated Thyone sperm is a dense material which I refer to as the actomere; it is composed of 20-25 filaments embedded in a dense matrix. To visualize the substructure of the actomere, the profilactin around it must be removed. This is achieved either by demembranating the sperm with Triton X-100 and then raising the pH to 8.0, or by adding ionophores to intact sperm at pH 8.0. Under these conditions, the actomere remains as a unit while the rest of the profilactin is solubilized or polymerized. When demembranated sperm are incubated under conditions in which the actin should polymerize, filaments grow from the end of the actomere: the actomere thus appears to behave as a nucleating body. This observation is strengthened by experiments in which untreated sperm are incubated in seawater or isotonic NaCl at pH 7.0 and the ionophore X537A is added; in this case, only a partial polymerization of the actin occurs and the acrosomal vacuole does not fuse with the cell surface. The actin filaments that do form, however, are attached to the apical end of the actomere. In fact, the elongating filaments push their way into and frequently through the acrosomal vacuole. Thus, it appears that the sperm organizes the actin filaments by controlling their nucleation. My model is that the cell controls the amount of unbound actin such that it is slightly above the critical concentration for polymerization. Then, spontaneous nucleation is unfavored and polymerization would proceed from existing nuclei such as the actomere.

Full Text

The Full Text of this article is available as a PDF (5.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burnside B. Microtubules and actin filaments in teleost visual cone elongation and contraction. J Supramol Struct. 1976;5(3):257–275. doi: 10.1002/jss.400050302. [DOI] [PubMed] [Google Scholar]
  2. DeRosier D., Mandelkow E., Silliman A. Structure of actin-containing filaments from two types of non-muscle cells. J Mol Biol. 1977 Jul 15;113(4):679–695. doi: 10.1016/0022-2836(77)90230-3. [DOI] [PubMed] [Google Scholar]
  3. Dipolo R., Requena J., Brinley F. J., Jr, Mullins L. J., Scarpa A., Tiffert T. Ionized calcium concentrations in squid axons. J Gen Physiol. 1976 Apr;67(4):433–467. doi: 10.1085/jgp.67.4.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Edds K. T. Microfilament bundles. I. Formation with uniform polarity. Exp Cell Res. 1977 Sep;108(2):452–456. doi: 10.1016/s0014-4827(77)80056-6. [DOI] [PubMed] [Google Scholar]
  5. KASAI M., NAKANO E., OOSAWA F. POLYMERIZATION OF ACTIN FREE FROM NUCLEOTIDES AND DIVALENT CATIONS. Biochim Biophys Acta. 1965 Mar 29;94:494–503. doi: 10.1016/0926-6585(65)90058-0. [DOI] [PubMed] [Google Scholar]
  6. Kane R. E. Actin polymerization and interaction with other proteins in temperature-induced gelation of sea urchin egg extracts. J Cell Biol. 1976 Dec;71(3):704–714. doi: 10.1083/jcb.71.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kersey Y. M., Wessells N. K. Localization of actin filaments in internodal cells of characean algae. A scanning and transmission electron microscope study. J Cell Biol. 1976 Feb;68(2):264–275. doi: 10.1083/jcb.68.2.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mooseker M. S., Tilney L. G. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol. 1975 Dec;67(3):725–743. doi: 10.1083/jcb.67.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Shimada Y., Obinata T. Polarity of actin filaments at the initial stage of myofibril assembly in myogenic cells in vitro. J Cell Biol. 1977 Mar;72(3):777–785. doi: 10.1083/jcb.72.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Tilney L. G., Goddard J. Nucleated sites for the assembly of cytoplasmic microtubules in the ectodermal cells of blastulae of Arbacia punctulata. J Cell Biol. 1970 Sep;46(3):564–575. doi: 10.1083/jcb.46.3.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Tilney L. G., Hatano S., Ishikawa H., Mooseker M. S. The polymerization of actin: its role in the generation of the acrosomal process of certain echinoderm sperm. J Cell Biol. 1973 Oct;59(1):109–126. doi: 10.1083/jcb.59.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tilney L. G., Kiehart D. P., Sardet C., Tilney M. Polymerization of actin. IV. Role of Ca++ and H+ in the assembly of actin and in membrane fusion in the acrosomal reaction of echinoderm sperm. J Cell Biol. 1978 May;77(2):536–550. doi: 10.1083/jcb.77.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tilney L. G., Mooseker M. S. Actin filament-membrane attachment: are membrane particles involved? J Cell Biol. 1976 Nov;71(2):402–416. doi: 10.1083/jcb.71.2.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tilney L. G. The polymerization of actin. II. How nonfilamentous actin becomes nonrandomly distributed in sperm: evidence for the association of this actin with membranes. J Cell Biol. 1976 Apr;69(1):51–72. doi: 10.1083/jcb.69.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tilney L. G. The polymerization of actin. III. Aggregates of nonfilamentous actin and its associated proteins: a storage form of actin. J Cell Biol. 1976 Apr;69(1):73–89. doi: 10.1083/jcb.69.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tilney L. G. The role of actin in nonmuscle cell motility. Soc Gen Physiol Ser. 1975;30:339–388. [PubMed] [Google Scholar]
  17. Vial J. D., Garrido J. Actin-like filaments amd membrane rearrangement in oxyntic cells. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4032–4036. doi: 10.1073/pnas.73.11.4032. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES