Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 May 1;77(2):536–550. doi: 10.1083/jcb.77.2.536

Polymerization of actin. IV. Role of Ca++ and H+ in the assembly of actin and in membrane fusion in the acrosomal reaction of echinoderm sperm

PMCID: PMC2110050  PMID: 25901

Abstract

When Pisaster, Asterias, or Thyone sperm are treated with the ionophore A23187 or X537A, an acrosomal reaction similar but not identical to a normal acrosomal reaction is induced in all the sperm. Based upon the response of the sperm, the acrosomal reaction consists of a series of temporally related steps. These include the fusion of the acrosomal vacuole with the cell surface, the polymerization of the actin, the alignment of the actin filaments, an increase in volume, an increase in the limiting membrane, and changes in the shape of the nucleus. In this report, we have concentrated on the first two steps in this sequence. Although fusion of the acrosomal vacuole with the cell surface requires Ca++, we found that the polymerization of actin instead appears to be dependent upon an increase in intracellular pH. This conclusion was reached by applying to sperm A23187, X537A, or nigericin, ionophores which all carry H+ at high affinity, yet vary in their affinity for other cations. When sperm are suspended in isotonic NaCl, isotonic KCl, calcium-free seawater, or seawater, all at pH 8.0, and the ionophore is added, the actin polymerizes explosively and an efflux of H+ from the cell occurs. However, if the pH, of the external medium is maintained at 6.5, the presumed intracellular pH, no effect is observed. And, finally, if egg jelly is added to sperm (the natural stimulus for the acrosomal reaction) at pH 8.0, H+ is also released. On the basis of these observations and those presented in earlier papers in this series, we conclude that a rise in intracellular pH induces the actin to disassociate from its binding proteins. Now it can polymerize.

Full Text

The Full Text of this article is available as a PDF (4.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bray D., Thomas C. Unpolymerized actin in fibroblasts and brain. J Mol Biol. 1976 Aug 25;105(4):527–544. doi: 10.1016/0022-2836(76)90233-3. [DOI] [PubMed] [Google Scholar]
  2. Carlsson L., Nyström L. E., Lindberg U., Kannan K. K., Cid-Dresdner H., Lövgren S. Crystallization of a non-muscle actin. J Mol Biol. 1976 Aug 15;105(3):353–366. doi: 10.1016/0022-2836(76)90098-x. [DOI] [PubMed] [Google Scholar]
  3. Case G. D., Vanderkooi J. M., Scarpa A. Physical properties of biological membranes determined by the fluorescence of the calcium ionophore A23187. Arch Biochem Biophys. 1974 May;162(1):174–185. doi: 10.1016/0003-9861(74)90116-7. [DOI] [PubMed] [Google Scholar]
  4. Collins F. A reevaluation of the fertilizin hypothesis of sperm agglutination and the description of a novel form of sperm adhesion. Dev Biol. 1976 Apr;49(2):381–394. doi: 10.1016/0012-1606(76)90182-2. [DOI] [PubMed] [Google Scholar]
  5. Dipolo R., Requena J., Brinley F. J., Jr, Mullins L. J., Scarpa A., Tiffert T. Ionized calcium concentrations in squid axons. J Gen Physiol. 1976 Apr;67(4):433–467. doi: 10.1085/jgp.67.4.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hatano S., Kondo H., Miki-Noumura T. Purification of sea urchin egg actin. Exp Cell Res. 1969 May;55(2):275–277. doi: 10.1016/0014-4827(69)90492-3. [DOI] [PubMed] [Google Scholar]
  7. Hori R. The sodium and potassium content in unfertilized and fertilized eggs of the sea urchin. Embryologia (Nagoya) 1965 Oct;9(1):34–39. doi: 10.1111/j.1440-169x.1965.tb00213.x. [DOI] [PubMed] [Google Scholar]
  8. Hylander B. L., Summers R. G. An ultrastructural investigation of the spermatozoa of two ophiuroids, Ophiocoma echinata and Ophiocoma wendti: acrosomal morphology and reaction. Cell Tissue Res. 1975;158(2):151–168. doi: 10.1007/BF00219958. [DOI] [PubMed] [Google Scholar]
  9. Johnson J. D., Epel D. Intracellular pH and activation of sea urchin eggs after fertilisation. Nature. 1976 Aug 19;262(5570):661–664. doi: 10.1038/262661a0. [DOI] [PubMed] [Google Scholar]
  10. Johnson R. G., Scarpa A. Internal pH of isolated chromaffin vesicles. J Biol Chem. 1976 Apr 10;251(7):2189–2191. [PubMed] [Google Scholar]
  11. Mooseker M. S., Tilney L. G. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol. 1975 Dec;67(3):725–743. doi: 10.1083/jcb.67.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pfeiffer D. R., Lardy H. A. Ionophore A23187: the effect of H+ concentration on complex formation with divalent and monovalent cations and the demonstration of K+ transport in mitochondria mediated by A23187. Biochemistry. 1976 Mar 9;15(5):935–943. doi: 10.1021/bi00650a001. [DOI] [PubMed] [Google Scholar]
  13. Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
  14. Reed P. W., Lardy H. A. A23187: a divalent cation ionophore. J Biol Chem. 1972 Nov 10;247(21):6970–6977. [PubMed] [Google Scholar]
  15. Sardet C., Tilney L. G. Origin of the membrane for the acrosomal process: is actin complexed with membrane precursors? Cell Biol Int Rep. 1977 Mar;1(2):193–200. doi: 10.1016/0309-1651(77)90040-6. [DOI] [PubMed] [Google Scholar]
  16. Schroeder T. E. Dynamics of the contractile ring. Soc Gen Physiol Ser. 1975;30:305–334. [PubMed] [Google Scholar]
  17. Spudich J. A. Biochemical and structural studies of actomyosin-like proteins from non-muscle cells. II. Purification, properties, and membrane association of actin from amoebae of Dictyostelium discoideum. J Biol Chem. 1974 Sep 25;249(18):6013–6020. [PubMed] [Google Scholar]
  18. Tilney L. G., Detmers P. Actin in erythrocyte ghosts and its association with spectrin. Evidence for a nonfilamentous form of these two molecules in situ. J Cell Biol. 1975 Sep;66(3):508–520. doi: 10.1083/jcb.66.3.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tilney L. G., Hatano S., Ishikawa H., Mooseker M. S. The polymerization of actin: its role in the generation of the acrosomal process of certain echinoderm sperm. J Cell Biol. 1973 Oct;59(1):109–126. doi: 10.1083/jcb.59.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tilney L. G. The polymerization of actin. II. How nonfilamentous actin becomes nonrandomly distributed in sperm: evidence for the association of this actin with membranes. J Cell Biol. 1976 Apr;69(1):51–72. doi: 10.1083/jcb.69.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tilney L. G. The polymerization of actin. III. Aggregates of nonfilamentous actin and its associated proteins: a storage form of actin. J Cell Biol. 1976 Apr;69(1):73–89. doi: 10.1083/jcb.69.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES