Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 May 1;77(2):358–370. doi: 10.1083/jcb.77.2.358

Calcium-binding proteins in the vorticellid spasmoneme

PMCID: PMC2110051  PMID: 418073

Abstract

The proteins of the contractile spasmoneme from Vorticella convallaria, Carcheslium polypinum, and Zoothamnium geniculatum have been extracted in the detergent, sodium dodecyl sulfate (SDS), as well as urea and guanidine hydrochloride (GuCl). After SDS extraction, the molecular weight distribution of the proteins was examined by means of SDS- polyacrylamide gel electrophoresis. Significant amounts of material corresponding to the contractile proteins actin and tubulin are not present. The contractile organelles in the three species examined contain a group of closely related proteins of molecular weight near 20,000, which constitute a major part (40-60%) of the dry mass. The 20,000 mol wt proteins in Zoothamnium bind calcium with high affinity (pK congruent to 6) and are termed "spasmins." By means of urea polyacrylamide gel electrophorsis, it is demonstrated that in Carchesium and Zoothamnium certain spasmin components bind calcium even in the presence of 6 M urea. The binding of calcium in 6 M urea suggests a functional relationship between the spasmins and the calcium- binding proteins of striated muscle which behave similarly. The calcium binding in urea also indicates that the spasmins within a single spasmoneme have different calcium affinities, and this difference in calcium-binding properties may be an important factor in the physiological function of the organelle.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. Contractility and its control in peritrich ciliates. J Protozool. 1973 Feb;20(1):25–36. doi: 10.1111/j.1550-7408.1973.tb05996.x. [DOI] [PubMed] [Google Scholar]
  2. Amos W. B. An apparatus for microelectrophoresis in polyacrylamide slab-gels. Anal Biochem. 1976 Feb;70(2):612–615. doi: 10.1016/0003-2697(76)90487-5. [DOI] [PubMed] [Google Scholar]
  3. Amos W. B. Contraction and calcium binding in the vorticellid ciliates. Soc Gen Physiol Ser. 1975;30:411–436. [PubMed] [Google Scholar]
  4. Amos W. B. Reversible mechanochemical cycle in the contraction of Vorticella. Nature. 1971 Jan 8;229(5280):127–128. doi: 10.1038/229127a0. [DOI] [PubMed] [Google Scholar]
  5. Amos W. B., Routledge L. M., Yew F. F. Calcium-binding proteins in a vorticellid contractile organelle. J Cell Sci. 1975 Oct;19(1):203–213. doi: 10.1242/jcs.19.1.203. [DOI] [PubMed] [Google Scholar]
  6. Amos W. B. Structure and coiling of the stalk in the peritrich ciliates Vorticella and Carchesium. J Cell Sci. 1972 Jan;10(1):95–122. doi: 10.1242/jcs.10.1.95. [DOI] [PubMed] [Google Scholar]
  7. Collins J. H., Potter J. D., Horn M. J., Wilshire G., Jackman N. The amino acid sequence of rabbit skeletal muscle troponin C: gene replication and homology with calcium-binding proteins from carp and hake muscle. FEBS Lett. 1973 Nov 1;36(3):268–272. doi: 10.1016/0014-5793(73)80388-6. [DOI] [PubMed] [Google Scholar]
  8. Donato H., Jr, Martin R. B. Conformations of carp muscle calcium binding parvalbumin. Biochemistry. 1974 Oct 22;13(22):4575–4579. doi: 10.1021/bi00719a016. [DOI] [PubMed] [Google Scholar]
  9. Gibbons B. H., Gibbons I. R. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J Cell Biol. 1972 Jul;54(1):75–97. doi: 10.1083/jcb.54.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hartshorne D. J., Pyun H. Y. Calcium binding by the troponin complex, and the purification and properties of troponin A. Biochim Biophys Acta. 1971 Mar 23;229(3):698–711. doi: 10.1016/0005-2795(71)90286-8. [DOI] [PubMed] [Google Scholar]
  11. Head J. F., Perry S. V. The interaction of the calcium-binding protein (troponin C) with bivalent cations and the inhibitory protein (troponin I). Biochem J. 1974 Feb;137(2):145–154. doi: 10.1042/bj1370145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huang B., Pitelka D. R. The contractile process in the ciliate, Stentor coeruleus. I. The role of microtubules and filaments. J Cell Biol. 1973 Jun;57(3):704–728. doi: 10.1083/jcb.57.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huxley H. E. The mechanism of muscular contraction. Science. 1969 Jun 20;164(3886):1356–1365. doi: 10.1126/science.164.3886.1356. [DOI] [PubMed] [Google Scholar]
  14. Kretsinger R. H., Nockolds C. E. Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem. 1973 May 10;248(9):3313–3326. [PubMed] [Google Scholar]
  15. Kristensen B. I., Nielsen L. E., Rostgaard J. Variations in myoneme birefringence in relation to length changes in Stentor coeruleus. Exp Cell Res. 1974 Mar 30;85(1):127–135. doi: 10.1016/0014-4827(74)90222-5. [DOI] [PubMed] [Google Scholar]
  16. Kristensen B. I., Nielsen L. E., Rostgaard J. Variations in myoneme birefringence in relation to length changes in Stentor coeruleus. Exp Cell Res. 1974 Mar 30;85(1):127–135. doi: 10.1016/0014-4827(74)90222-5. [DOI] [PubMed] [Google Scholar]
  17. Moody M. F. Sheath of bacteriophage T4. 3. Contraction mechanism deduced from partially contracted sheaths. J Mol Biol. 1973 Nov 15;80(4):613–635. doi: 10.1016/0022-2836(73)90200-3. [DOI] [PubMed] [Google Scholar]
  18. Routledge L. M., Amos W. B., Gupta B. L., Hall T. A., Weis-Fogh T. Microprobe measurements of calcium binding in the contractile spasmoneme of a vorticellid. J Cell Sci. 1975 Oct;19(1):195–201. doi: 10.1242/jcs.19.1.195. [DOI] [PubMed] [Google Scholar]
  19. Weis-Fogh T., Amos W. B. Evidence for a new mechanism of cell motility. Nature. 1972 Apr 7;236(5345):301–304. doi: 10.1038/236301a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES