Abstract
The nuclear envelope and associated structures from Xenopus laevis oocytes (stage VI) have been examined with the high resolution scanning electron microscope (SEM). The features of the inner and outer surfaces of the nuclear surface complex were revealed by manual isolation , whereas the membranes facing the perinuclear space (the space between the inner and outer nuclear membranes) were observed by fracturing the nuclear envelope in this plane and splaying the corresponding regions apart. Pore complexes were observed on all four membrane surfaces of this double-membraned structure. The densely packed pore complexes (55/micron2) are often clustered into triplets with shared walls (outer diameter = 90 nm; inner diameter = 25 nm; wall thickness = aproximately 30 nm), and project aproximately 20 nm above each membrane except where they are flush with the innermost surface. The pore complex appears to be an aggregate of four 30-nm subunits. The nuclear cortex, a fibrous layer (300 nm thickness) associated with the inner surface of the nuclear envelope, has been revealed by rapid fixation. This cortical layer is interrupted by funnel-shaped intranuclear channels (120-640 nm diam) which narrow towards the pore complexes. Chains of particles, arranged in spirals, are inserted into these intranuclear channels. The fibers associated with the innermost face of the nuclear envelope can be extraced with 0.6 MKI to reveal the pore complexes. A model of the nuclear surface complex, compiled from the visualization of all the membrane faces and the nuclear cortex, demonstrates relations between the intranuclear channels (3.2/micron2) and the numerous pore complexes, and the possibility of their role in nucleocytoplasmic interactions.
Full Text
The Full Text of this article is available as a PDF (5.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- COGGESHALL R. E., FAWCETT D. W. THE FINE STRUCTURE OF THE CENTRAL NERVOUS SYSTEM OF THE LEECH, HIRUDO MEDICINALIS. J Neurophysiol. 1964 Mar;27:229–289. doi: 10.1152/jn.1964.27.2.229. [DOI] [PubMed] [Google Scholar]
- Douvas A. S., Harrington C. A., Bonner J. Major nonhistone proteins of rat liver chromatin: preliminary identification of myosin, actin, tubulin, and tropomyosin. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3902–3906. doi: 10.1073/pnas.72.10.3902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engelhardt P., Pusa K. Nuclear pore complexes: "press-stud" elements of chromosomes in pairing and control. Nat New Biol. 1972 Dec 6;240(101):163–166. doi: 10.1038/newbio240163a0. [DOI] [PubMed] [Google Scholar]
- Fabergé A. C. The nuclear pore complex: its free existence and an hypothesis as to its origin. Cell Tissue Res. 1974;151(4):403–415. doi: 10.1007/BF00222987. [DOI] [PubMed] [Google Scholar]
- Flickinger C. J. The fine structure of the nuclear envelope in amebae: alterations following nuclear transplantation. Exp Cell Res. 1970 May;60(2):225–236. doi: 10.1016/0014-4827(70)90509-4. [DOI] [PubMed] [Google Scholar]
- Franke W. W. Isolated nuclear membranes. J Cell Biol. 1966 Dec;31(3):619–623. doi: 10.1083/jcb.31.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franke W. W., Scheer U. The ultrastructure of the nuclear envelope of amphibian oocytes: a reinvestigation. I. The mature oocyte. J Ultrastruct Res. 1970 Feb;30(3):288–316. doi: 10.1016/s0022-5320(70)80064-8. [DOI] [PubMed] [Google Scholar]
- GALL J. G. Observations on the nuclear membrane with the electron microscope. Exp Cell Res. 1954 Aug;7(1):197–200. doi: 10.1016/0014-4827(54)90054-3. [DOI] [PubMed] [Google Scholar]
- Gall J. G. Octagonal nuclear pores. J Cell Biol. 1967 Feb;32(2):391–399. doi: 10.1083/jcb.32.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill R. J., Maundrell K., Callan H. G. Nonhistone proteins of the oocyte nucleus of the newt. J Cell Sci. 1974 Jun;15(1):145–161. doi: 10.1242/jcs.15.1.145. [DOI] [PubMed] [Google Scholar]
- Kartenbeck J., Zentgraf H., Scheer U., Franke W. W. The nuclear envelope in freeze-etching. Ergeb Anat Entwicklungsgesch. 1971;45(1):3–55. doi: 10.1007/978-3-662-10390-6. [DOI] [PubMed] [Google Scholar]
- Kashnig D. M., Kasper C. B. Isolation, morphology, and composition of the nuclear membrane from rat liver. J Biol Chem. 1969 Jul 25;244(14):3786–3792. [PubMed] [Google Scholar]
- Kirschner R. H., Rusli M., Martin T. E. Characterization of the nuclear envelope, pore complexes, and dense lamina of mouse liver nuclei by high resolution scanning electron microscopy. J Cell Biol. 1977 Jan;72(1):118–132. doi: 10.1083/jcb.72.1.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maul G. G., Maul H. M., Scogna J. E., Lieberman M. W., Stein G. S., Hsu B. Y., Borun T. W. Time sequence of nuclear pore formation in phytohemagglutinin-stimulated lymphocytes and in HeLa cells during the cell cycle. J Cell Biol. 1972 Nov;55(2):433–447. doi: 10.1083/jcb.55.2.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maul G. G. On the octagonality of the nuclear pore complex. J Cell Biol. 1971 Nov;51(21):558–563. doi: 10.1083/jcb.51.2.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maundrell K. Proteins of the newt oocyte nucleus: analysis of the nonhistone proteins from lampbrush chromosomes, nucleoli and nuclear sap. J Cell Sci. 1975 May;17(3):579–588. doi: 10.1242/jcs.17.3.579. [DOI] [PubMed] [Google Scholar]
- Mazia D., Schatten G., Sale W. Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. J Cell Biol. 1975 Jul;66(1):198–200. doi: 10.1083/jcb.66.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osborn M., Weber K. The detertent-resistant cytoskeleton of tissue culture cells includes the nucleus and the microfilament bundles. Exp Cell Res. 1977 May;106(2):339–349. doi: 10.1016/0014-4827(77)90179-3. [DOI] [PubMed] [Google Scholar]
- PAPPAS G. D. The fine structure of the nuclear envelope of Amoeba proteus. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):431–434. doi: 10.1083/jcb.2.4.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patrizi G., Poger M. The ultrastructure of the nuclear periphery. The zonula nucleum limitans. J Ultrastruct Res. 1967 Jan;17(1):127–136. doi: 10.1016/s0022-5320(67)80025-x. [DOI] [PubMed] [Google Scholar]
- Schatten G., Mazia D. The penetration of the spermatozoon through the sea urchin egg surface at fertilization. Observations from the outside on whole eggs and from the inside on isolated surfaces. Exp Cell Res. 1976 Mar 15;98(2):325–337. doi: 10.1016/0014-4827(76)90444-4. [DOI] [PubMed] [Google Scholar]
- Scheer U., Kartenbeck J., Trendelenburg M. F., Stadler J., Franke W. W. Experimental disintegration of the nuclear envelope. Evidence for pore-connecting fibrils. J Cell Biol. 1976 Apr;69(1):1–18. doi: 10.1083/jcb.69.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheer U. The ultrastructure of the nuclear envelope of amphibian oocytes: a reinvestigation. 3. Actinomycin-induced decrease in central granules within the pores. J Cell Biol. 1970 May;45(2):445–449. doi: 10.1083/jcb.45.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vacquier V. D. The isolation of intact cortical granules from sea urchin eggs: calcium lons trigger granule discharge. Dev Biol. 1975 Mar;43(1):62–74. doi: 10.1016/0012-1606(75)90131-1. [DOI] [PubMed] [Google Scholar]
- WATSON M. L. Further observations on the nuclear envelope of the animal cell. J Biophys Biochem Cytol. 1959 Oct;6:147–156. doi: 10.1083/jcb.6.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wise G. E., Stevens A. R., Prescott D. M. Evidence of RNA in the helices of Amoeba proteus. Exp Cell Res. 1972 Dec;75(2):347–352. doi: 10.1016/0014-4827(72)90439-9. [DOI] [PubMed] [Google Scholar]
- Wunderlich F., Herlan G. Reversibly contractile nuclear matrix. Its isolation, structure, and composition. J Cell Biol. 1977 May;73(2):271–278. doi: 10.1083/jcb.73.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]