Abstract
Pretreatment of human platelets with the metabolic inhibitors rotenone and 2-deoxyglucose, before French press homogenization, has led to the isolation of dense storage granules in an overall yield of about 20%. The concentrations of serotonin, ATP and ADP were estimated in the dense granules. Serotonin was 40--60-fold enriched in the dense granules compared to the platelet homogenate. Stored ATP and ADP were also 40-fold enriched in the dense granules compared to the estimated storage nucleotide pool in intact platelets. The ATP to ADP ratio in the isolated dense granules was 0.68-0.70, the same as the ratio of the secreted ATP and ADP. In platelets prelabeled with [3H]adenine, the specific radioactivities of the ATP and ADP in the isolated dense granules and of the secreted ATP and ADP were both negligible, whereas the estimated specific radioactivity of the metabolically active ATP and ADP was 2,000 cpm/nmol. These results confirm that the ATP and ADP in the isolated dense granules are the same as the secreted ATP and ADP in terms of metabolic inactivity and their ATP to ADP ratios.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ASTER R. H., JANDL J. H. PLATELET SEQUESTRATION IN MAN. I. METHODS. J Clin Invest. 1964 May;43:843–855. doi: 10.1172/JCI104970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BUCKINGHAM S., MAYNERT E. W. THE RELEASE OF 5-HYDROXYTRYPTAMINE, POTASSIUM AND AMINO ACIDS FROM PLATELETS. J Pharmacol Exp Ther. 1964 Mar;143:332–339. [PubMed] [Google Scholar]
- Brinkley B. R., Barham S. S., Barranco S. C., Fuller G. M. Rotenone inhibition of spindle microtubule assembly in mammalian cells. Exp Cell Res. 1974 Mar 30;85(1):41–46. doi: 10.1016/0014-4827(74)90210-9. [DOI] [PubMed] [Google Scholar]
- Broekman M. J., Handin R. I., Cohen P. Distribution of fibrinogen, and platelet factors 4 and XIII in subcellular fractions of human platelets. Br J Haematol. 1975 Sep;31(1):51–55. doi: 10.1111/j.1365-2141.1975.tb00831.x. [DOI] [PubMed] [Google Scholar]
- Da Prada M., Jakábová M., Lüscher E. F., Pletscher A., Richards J. G. Subcellular localization of the heparin-neutralizing factor in blood platelets. J Physiol. 1976 May;257(2):495–502. doi: 10.1113/jphysiol.1976.sp011380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Da Prada M., Pletscher A., Tranzer J. P., Knuchel H. Subcellular localization of 5-hydroxytryptamine and histamine in blood platelets. Nature. 1967 Dec 30;216(5122):1315–1317. doi: 10.1038/2161315a0. [DOI] [PubMed] [Google Scholar]
- Da Prada M., Pletscher A., Tranzer J. P. Storage of ATP and 5-hydroxytryptamine in blood platelets of guinea-pigs. J Physiol. 1971 Sep;217(3):679–688. doi: 10.1113/jphysiol.1971.sp009593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Da Prada M., Tranzer J. P., Pletscher A. Storage of 5-hydroxytryptamine in human blood platelets. Experientia. 1972 Nov 15;28(11):1328–1329. doi: 10.1007/BF01965326. [DOI] [PubMed] [Google Scholar]
- Day H. J., Holmsen H., Hovig T. Subcellular particles of human platelets. A biochemical and electron microscopic study with particular reference to the influence of fractionation techniques. Scand J Haematol Suppl. 1969;7:3–35. [PubMed] [Google Scholar]
- French P. C., Holme R. A method for blood platelet homogenization using the Aminco-French pressure cell. Thromb Diath Haemorrh. 1974 Dec 31;32(2-3):432–440. [PubMed] [Google Scholar]
- Hardisty R. M., Mills D. C. The platelet defect associated with albinism. Ann N Y Acad Sci. 1972 Oct 27;201:429–436. doi: 10.1111/j.1749-6632.1972.tb16315.x. [DOI] [PubMed] [Google Scholar]
- Holmsen H., Day H. J., Storm E. Adenine nucleotide metabolism of blood platelets. VI. Subcellular localization of nucleotide pools with different functions in the platelet release reaction. Biochim Biophys Acta. 1969 Aug 20;186(2):254–266. doi: 10.1016/0005-2787(69)90003-3. [DOI] [PubMed] [Google Scholar]
- Holmsen H., Rozenberg M. C. Adenine nucleotide metabolism of blood platelets. 3. Adenine phosphoribosyl transferase and nucleotide formation from exogenous adenine. Biochim Biophys Acta. 1968 Apr 22;157(2):266–279. [PubMed] [Google Scholar]
- Holmsen H., Setkowsky C. A., Day H. J. Effects of antimycin and 2-deoxyglucose on adenine nucleotides in human platelets. Role of metabolic adenosine triphosphate in primary aggregation, secondary aggregation and shape change of platetets. Biochem J. 1974 Nov;144(2):385–396. doi: 10.1042/bj1440385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmsen H., Storm E., Day H. J. Determination of ATP and ADP in blood platelets: a modification of the firefly luciferase assay for plasma. Anal Biochem. 1972 Apr;46(2):489–501. doi: 10.1016/0003-2697(72)90323-5. [DOI] [PubMed] [Google Scholar]
- Holmsen H., Weiss H. J. Further evidence for a deficient storage pool of adenine nucleotides in platelets from some patients with thrombocytopathia--"storage pool disease". Blood. 1972 Feb;39(2):197–209. [PubMed] [Google Scholar]
- Lages B., Scrutton M. C., Holmsen H., Day H. J., Weiss H. J. Metal ion contents of gel-filtered platelets from patients with storage pool disease. Blood. 1975 Jul;46(1):119–130. [PubMed] [Google Scholar]
- Marcus A. J., Zucker-Franklin D., Safier L. B., Ullman H. L. Studies on human platelet granules and membranes. J Clin Invest. 1966 Jan;45(1):14–28. doi: 10.1172/JCI105318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin J. H., Carson F. L., Race G. J. Calcium-containing platelet granules. J Cell Biol. 1974 Mar;60(3):775–777. doi: 10.1083/jcb.60.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mürer E. H. Release reaction and energy metabolism in blood platelets with special reference to the burst in oxygen uptake. Biochim Biophys Acta. 1968 Oct 1;162(3):320–326. doi: 10.1016/0005-2728(68)90118-7. [DOI] [PubMed] [Google Scholar]
- Salganicoff L., Fukami M. H. Energy metabolism of blood platelets. I. Isolation and properties of platelet mitochondria. Arch Biochem Biophys. 1972 Dec;153(2):726–735. doi: 10.1016/0003-9861(72)90391-8. [DOI] [PubMed] [Google Scholar]
- Salganicoff L., Hebda P. A., Yandrasitz J., Fukami M. H. Subcellular fractionation of pig platelets. Biochim Biophys Acta. 1975 Apr 7;385(2):394–411. doi: 10.1016/0304-4165(75)90369-4. [DOI] [PubMed] [Google Scholar]
- Siegel A., Burri P. H., Weibel E. R., Bettex-Galland M., Lüscher E. F. Density gradient centrifugation and electron microscopic characterization of subcellular fractions from human blood platelets. Thromb Diath Haemorrh. 1971 Jun 30;25(2):252–267. [PubMed] [Google Scholar]
- Silcox D. C., Jacobelli S., McCarty D. J. Identification of inorganic pyrophosphate in human platelets and its release on stimulation with thrombin. J Clin Invest. 1973 Jul;52(7):1595–1600. doi: 10.1172/JCI107336. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skaer R. J., Emmines J. P., Peters P. D. Platelet dense bodies: a quantitative microprobe analysis. J Cell Sci. 1976 Mar;20(2):441–457. doi: 10.1242/jcs.20.2.441. [DOI] [PubMed] [Google Scholar]
- White J. G. Effects of colchicine and Vinca alkaloids on human platelets. I. Influence on platelet microtubules and contractile function. Am J Pathol. 1968 Aug;53(2):281–291. [PMC free article] [PubMed] [Google Scholar]
- White J. G. The dense bodies of human platelets. Origin of serotonin storage particles from platelet granules. Am J Pathol. 1968 Nov;53(5):791–808. [PMC free article] [PubMed] [Google Scholar]