Abstract
Mg(2+) at an optimal concentration of 2mM (ph 6.5) induces large increases (up to 30 percent) in the optical density of bovine heart mitochondria incubated under conditions of low ionic strength (< approx. 0.01). The increases are associated with aggregation (sticking together) of the inner membranes and are little affected by changes in the energy status of the mitochondria. Virtually all of a number of other polyvalent cations tested and Ag(+) induce increases in mitochondrial optical density similar to those induced by Mg(2+), their approximate order of concentration effectiveness in respect to Mg(2+) being: La(3+) > Pb(2+) = Cu(2+) > Cd(2+) > Zn(2+) > Ag(+) > Mn(2+) > Ca(2+) > Mg(2+). With the exception of Mg(2+), all of these cations appear to induce swelling of the mitochondria concomitant with inner membrane aggregation. The inhibitors of the adenine nucleotide transport reaction carboxyatratyloside and bongkrekic acid are capable of preventing and reversing Mg(2+)-induced aggregation at the same low concentration required for complete inhibition of phosphorylating respiration, suggesting that they inhibit the aggregation by binding to the adenine nucleotide carrier. The findings are interpreted to indicate (a) that the inner mitochondrial membrane is normally prevented from aggregating by virtue of its net negative outer surface change, (b) that the cations induce the membrane to aggregate by binding at its outer surface, decreasing the net negative charge, and (c) that carboxyatractyloside and bongkrekic acid inhibit the aggregation by binding to the outer surface of the membrane, increasing the net negative charge.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRUNI A., LUCIANI S., BORTIGNON C. COMPETITIVE REVERSAL BY ADENINE NUCLEOTIDES OF ATRACTYLOSIDE EFFECT ON MITOCHONDRIAL ENERGY TRANSFER. Biochim Biophys Acta. 1965 Mar 8;97:434–441. doi: 10.1016/0304-4165(65)90154-6. [DOI] [PubMed] [Google Scholar]
- Crompton M., Palmieri F., Capano M., Quagliariello E. The transport of sulphate and sulphite in rat liver mitochondria. Biochem J. 1974 Jul;142(1):127–137. doi: 10.1042/bj1420127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curtis A. S. The measurement of cell adhesiveness by an absolute method. J Embryol Exp Morphol. 1969 Nov;22(3):305–325. [PubMed] [Google Scholar]
- Erdelt H., Weidemann M. J., Buchholz M., Klingenberg M. Some principle effects of bongkrekic acid on the binding of adenine nucleotides to mitochondrial membranes. Eur J Biochem. 1972 Oct 17;30(1):107–122. doi: 10.1111/j.1432-1033.1972.tb02077.x. [DOI] [PubMed] [Google Scholar]
- Fromherz P., Masters B. Interfacial pH at electrically charged lipid monolayers investigated by the lipoid pH-indicator method. Biochim Biophys Acta. 1974 Aug 9;356(3):270–275. doi: 10.1016/0005-2736(74)90267-3. [DOI] [PubMed] [Google Scholar]
- Hackenbrock C. R. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria. J Cell Biol. 1968 May;37(2):345–369. doi: 10.1083/jcb.37.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heidrich H. G., Stahn R., Hannig K. The surface charge of rat liver mitochondria and their membranes. Clarification of some controversies concerning mitochondrial structure. J Cell Biol. 1970 Jul;46(1):137–150. doi: 10.1083/jcb.46.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henderson P. J., Lardy H. A. Bongkrekic acid. An inhibitor of the adenine nucleotide translocase of mitochondria. J Biol Chem. 1970 Mar 25;245(6):1319–1326. [PubMed] [Google Scholar]
- JANDL J. H., SIMMONS R. L. The agglutination and sensitization of red cells by metallic cations: interactions between multivalent metals and the red-cell membrane. Br J Haematol. 1957 Jan;3(1):19–38. doi: 10.1111/j.1365-2141.1957.tb05768.x. [DOI] [PubMed] [Google Scholar]
- Jacobus W. E., Brierley G. P. Ion transport by heart mitochondria. XVI. Cation binding by submitochondrial particles. J Biol Chem. 1969 Sep 25;244(18):4995–5004. [PubMed] [Google Scholar]
- Kemp A., Jr, Out T. A., Guiot H. F., Souverijn J. H. The effect of adenine nucleotides and pH on the inhibition of oxidative phosphorylation by bongkrekic acid. Biochim Biophys Acta. 1970 Dec 8;223(2):460–462. doi: 10.1016/0005-2728(70)90210-0. [DOI] [PubMed] [Google Scholar]
- Klingenberg M., Buchholz M. On the mechanism of bongkrekate effect on the mitochondrial adenine-nucleotide carrier as studied through the binding of ADP. Eur J Biochem. 1973 Oct 5;38(2):346–358. doi: 10.1111/j.1432-1033.1973.tb03067.x. [DOI] [PubMed] [Google Scholar]
- Klingenberg M., Grebe K., Heldt H. W. On the inhibition of the adenine nucleotide translocation by bongkrekic acid. Biochem Biophys Res Commun. 1970 May 11;39(3):344–351. doi: 10.1016/0006-291x(70)90582-6. [DOI] [PubMed] [Google Scholar]
- Klingenberg M. The state of ADP or ATP fixed to the mitochondria by bongkrekate. Eur J Biochem. 1976 Jun 1;65(2):601–605. doi: 10.1111/j.1432-1033.1976.tb10377.x. [DOI] [PubMed] [Google Scholar]
- LYNN W. S., Jr, FORTNEY S., BROWN R. H. ROLE OF EDTA AND METALS IN MITOCHONDRIAL CONTRACTION. J Cell Biol. 1964 Oct;23:9–19. doi: 10.1083/jcb.23.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lauquin G. J., Vignais P. V. Interaction of (3H) bongkrekic acid with the mitochondrial adenine nucleotide translocator. Biochemistry. 1976 Jun 1;15(11):2316–2322. doi: 10.1021/bi00656a011. [DOI] [PubMed] [Google Scholar]
- Luciani S., Martini N., Santi R. Effects of carboxyatractyloside a structural analogue of atractyloside on mitochondrial oxidative phosphorylation. Life Sci II. 1971 Sep 8;10(17):961–968. doi: 10.1016/0024-3205(71)90099-3. [DOI] [PubMed] [Google Scholar]
- Maslow D. E., Weiss L. Some effects of positively charged surface groups on cell aggregation. J Cell Sci. 1976 Jul;21(2):219–225. doi: 10.1242/jcs.21.2.219. [DOI] [PubMed] [Google Scholar]
- Meijer A. J., Van Dam K. The metabolic significance of anion transport in mitochondria. Biochim Biophys Acta. 1974 Dec 30;346(3-4):213–244. doi: 10.1016/0304-4173(74)90001-9. [DOI] [PubMed] [Google Scholar]
- PASSOW H., ROTHSTEIN A., CLARKSON T. W. The general pharmacology of the heavy metals. Pharmacol Rev. 1961 Jun;13:185–224. [PubMed] [Google Scholar]
- PETHICA B. A. The physical chemistry of cell adhesion. Exp Cell Res. 1961;Suppl 8:123–140. doi: 10.1016/0014-4827(61)90344-5. [DOI] [PubMed] [Google Scholar]
- Scherer B., Klingenberg M. Demonstration of the relationship between the adenine nucleotide carrier and the structural changes of mitochondria as induced by adenosine 5'-diphosphate. Biochemistry. 1974 Jan 1;13(1):161–170. doi: 10.1021/bi00698a025. [DOI] [PubMed] [Google Scholar]
- Stoner C. D., Hanson J. B. Swelling and contraction of corn mitochondria. Plant Physiol. 1966 Feb;41(2):255–266. doi: 10.1104/pp.41.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoner C. D., Sirak H. D. Adenine nucleotide-induced contraction of the inner mitochondrial membrane. I. General characterization. J Cell Biol. 1973 Jan;56(1):51–64. doi: 10.1083/jcb.56.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoner C. D., Sirak H. D. Adenine nucleotide-induced contraction on the inner mitochondrial membrane. II. Effect of bongkrekic acid. J Cell Biol. 1973 Jan;56(1):65–73. doi: 10.1083/jcb.56.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vignais P. V. Molecular and physiological aspects of adenine nucleotide transport in mitochondria. Biochim Biophys Acta. 1976 Apr 30;456(1):1–38. doi: 10.1016/0304-4173(76)90007-0. [DOI] [PubMed] [Google Scholar]
- Vignais P. V., Vignais P. M., Defaye G. Adenosine diphosphate translocation in mitochondria. Nature of the receptor site for carboxyatractyloside (gummiferin). Biochemistry. 1973 Apr 10;12(8):1508–1519. doi: 10.1021/bi00732a007. [DOI] [PubMed] [Google Scholar]
- Weiss H. J. Platelet physiology and abnormalities of platelet function (first of two parts). N Engl J Med. 1975 Sep 11;293(11):531–541. doi: 10.1056/NEJM197509112931105. [DOI] [PubMed] [Google Scholar]
- Weiss L., Harlos J. P. Some speculations on the rate of adhesion of cells to coverslips. J Theor Biol. 1972 Oct;37(1):169–179. doi: 10.1016/0022-5193(72)90123-3. [DOI] [PubMed] [Google Scholar]
- Weiss L. Studies on cellular adhesion in tissue culture. XIV. Positively charged surface groups and the rate of cell adhesion. Exp Cell Res. 1974 Feb;83(2):311–318. doi: 10.1016/0014-4827(74)90344-9. [DOI] [PubMed] [Google Scholar]
