Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Aug 1;74(2):547–560. doi: 10.1083/jcb.74.2.547

Biochemical and cytochemical evidence for ATPase activity in basal bodies isolated from oviduct

PMCID: PMC2110071  PMID: 18479

Abstract

Biochemical and cytochemical techniques were used to determine whether oviduct basal bodies have ATPase activity. All studies were carried out on basal bodies isolated and purified from the chicken oviduct. These preparations contained structurally intact basal bodies with basal feet, rootlet, and alar sheet accessory structures. Whereas the specific activity of the basal body ATPase in 2 mM Ca++ or 2 mM Mg++, 1 mM ATP, pH 8.0, averaged 0.04 mumol Pi/min per mg protein, higher concentrations of either cation inhibited the enzyme activity. Furthermore, the pH optimum for this reaction was pH 8.5. In comparison, the ATPase activity in cilia purified and measured under conditions identical to those for determining the basal body ATPase activity averaged 0.07 mumol Pi/min per mg protein. However, the activity increased at higher concentrations of divalent cation, and the pH optimum was pH 10.0. By cytochemical procedures for localizing ATPase activity, ATP-dependent reaction product in isolated basal bodies was found to be confined to: (a) the cross-striations of the rootlet; (b) the outer portion of the basal foot; (c) the alar sheets; and (d) the triplet microtubules. It is concluded that basal bodiesve an intrinsic ATPase activity that, by a variety of criteria, can be distinguished from the ATPase activity found in cilia.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G., Hein C. E. Estrogen dependent ciliogenesis in the chick oviduct. Cell Tissue Res. 1976 Sep 1;171(4):459–466. doi: 10.1007/BF00220238. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. G. Isolation of ciliated or unciliated basal bodies from the rabbit oviduct. J Cell Biol. 1974 Feb;60(2):393–404. doi: 10.1083/jcb.60.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson R. G. The three-dimensional structure of the basal body from the rhesus monkey oviduct. J Cell Biol. 1972 Aug;54(2):246–265. doi: 10.1083/jcb.54.2.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cordier A. C. Relationship between ciliary rootlets and smooth endoplasmic reticulum. Cell Tissue Res. 1976 Feb 25;166(3):315–318. doi: 10.1007/BF00220128. [DOI] [PubMed] [Google Scholar]
  5. Dirksen E. R., Satir P. Ciliary activity in the mouse oviduct as studied by transmission and scanning electron microscopy. Tissue Cell. 1972;4(3):389–403. doi: 10.1016/s0040-8166(72)80017-x. [DOI] [PubMed] [Google Scholar]
  6. GIBBONS I. R., GRIMSTONE A. V. On flagellar structure in certain flagellates. J Biophys Biochem Cytol. 1960 Jul;7:697–716. doi: 10.1083/jcb.7.4.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GIBBONS I. R. The relationship between the fine structure and direction of beat in gill cilia of a lamellibranch mollusc. J Biophys Biochem Cytol. 1961 Oct;11:179–205. doi: 10.1083/jcb.11.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldstein S. F. Irradiation of sperm tails by laser microbeam. J Exp Biol. 1969 Nov;51(2):431–441. doi: 10.1242/jeb.51.2.431. [DOI] [PubMed] [Google Scholar]
  9. Hyams J. S., Borisy G. G. Flagellar coordination in Chlamydomonas reinhardtii: isolation and reactivation of the flagellar apparatus. Science. 1975 Sep 12;189(4206):891–893. doi: 10.1126/science.1098148. [DOI] [PubMed] [Google Scholar]
  10. Kalnins V. I., Porter K. R. Centriole replication during ciliogenesis in the chick tracheal epithelium. Z Zellforsch Mikrosk Anat. 1969;100(1):1–30. doi: 10.1007/BF00343818. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Marchesi V. T., Palade G. E. The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes. J Cell Biol. 1967 Nov;35(2):385–404. doi: 10.1083/jcb.35.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Matsusaka T. ATPase activity in the ciliary rootlet of human retinal rods. J Cell Biol. 1967 Apr;33(1):203–208. doi: 10.1083/jcb.33.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moses H. L., Rosenthal A. S. Pitfalls in the use of lead ion for histochemical localization of nucleoside phosphatases. J Histochem Cytochem. 1968 Aug;16(8):530–539. doi: 10.1177/16.8.530. [DOI] [PubMed] [Google Scholar]
  15. Naito Y., Kaneko H. Control of ciliary activities by adenosinetriphosphate and divalent cations in triton-extracted models of Paramecium caudatum. J Exp Biol. 1973 Jun;58(3):657–676. doi: 10.1242/jeb.58.3.657. [DOI] [PubMed] [Google Scholar]
  16. Nayak R. K., Wu A. S. Fine structural localization of adenosine tri-phosphatase in the epithelium of the rabbit oviduct. J Anim Sci. 1975 Oct;41(4):1077–1083. doi: 10.2527/jas1975.4141077x. [DOI] [PubMed] [Google Scholar]
  17. OLSSON R. The relationship between ciliary rootlets and other cell structures. J Cell Biol. 1962 Dec;15:596–599. doi: 10.1083/jcb.15.3.596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Phillips D. M. Insect sperm: their structure and morphogenesis. J Cell Biol. 1970 Feb;44(2):243–277. doi: 10.1083/jcb.44.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Satir P. Ionophore-mediated calcium entry induces mussel gill ciliary arrest. Science. 1975 Nov 7;190(4214):586–588. doi: 10.1126/science.1103290. [DOI] [PubMed] [Google Scholar]
  20. Sorokin S. P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci. 1968 Jun;3(2):207–230. doi: 10.1242/jcs.3.2.207. [DOI] [PubMed] [Google Scholar]
  21. Steinman R. M. An electron microscopic study of ciliogenesis in developing epidermis and trachea in the embryo of Xenopus laevis. Am J Anat. 1968 Jan;122(1):19–55. doi: 10.1002/aja.1001220103. [DOI] [PubMed] [Google Scholar]
  22. Summers K. E., Gibbons I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3092–3096. doi: 10.1073/pnas.68.12.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Verhage H. G., Abel J. H., Jr, Tietz W. J., Jr, Barrau M. D. Estrogen-induced differentiation of the oviductal epithelium in prepubertal dogs. Biol Reprod. 1973 Dec;9(5):475–488. doi: 10.1093/biolreprod/9.5.475. [DOI] [PubMed] [Google Scholar]
  24. WACHSTEIN M., MEISEL E. Histochemistry of hepatic phosphatases of a physiologic pH; with special reference to the demonstration of bile canaliculi. Am J Clin Pathol. 1957 Jan;27(1):13–23. doi: 10.1093/ajcp/27.1.13. [DOI] [PubMed] [Google Scholar]
  25. Wolfe J. Structural analysis of basal bodies of the isolated oral apparatus of Tetrahymena pyriformis. J Cell Sci. 1970 May;6(3):679–700. doi: 10.1242/jcs.6.3.679. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES