Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Aug 1;74(2):501–523. doi: 10.1083/jcb.74.2.501

Cell-to-cell transfer of glial proteins to the squid giant axon: The glia- neuron protein transfer hypothesis

RJ Lasek, H Gainer, JL Barker
PMCID: PMC2110074  PMID: 885913

Abstract

The hypothesis that glial cells synthesize proteins which are transferred to adjacent neurons was evaluated in the giant fiber of the squid (Loligo pealei). When giant fibers are separated from their neuron cell bodies and incubated in the presence of radioactive amino acids, labeled proteins appear in the glial cells and axoplasm. Labeled axonal proteins were detected by three methods: extrusion of the axoplasm from the giant fiber, autoradiography, and perfusion of the giant fiber. This protein synthesis is completely inhibited by puromycin but is not affected by chloramphenicol. The following evidence indicates that the labeled axonal proteins are not synthesized within the axon itself. (a) The axon does not contain a significant amount of ribosomes or ribosomal RNA. (b) Isolated axoplasm did not incorporate [(3)H]leucine into proteins. (c) Injection of Rnase into the giant axon did not reduce the appearance of newly synthesized proteins in the axoplasm of the giant fiber. These findings, coupled with other evidence, have led us to conclude that the adaxonal glial cells synthesize a class of proteins which are transferred to the giant axon. Analysis of the kinetics of this phenomenon indicates that some proteins are transferred to the axon within minutes of their synthesis in the glial cells. One or more of the steps in the transfer process appear to involve Ca++, since replacement of extracellular Ca++ by either Mg++ or Co++ significantly reduces the appearance of labeled proteins in the axon. A substantial fraction of newly synthesized glial proteins, possibly as much as 40 percent, are transferred to the giant axon. These proteins are heterogeneous and range in size from 12,000 to greater than 200,000 daltons. Comparisons of the amount of amino acid incorporation in glia cells and neuron cell bodies raise the possibility that the adaxonal glial cells may provide an important source of axonal proteins which is supplemental to that provided by axonal transport from the cell body. These findings are discussed with reference to a possible trophic effect of glia on neurons and metabolic cooperation between adaxonal glia and the axon.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker J. L., Hoffman P. N., Gainer H., Lasek R. J. Rapid transport of proteins in the sonic motor system of the toadfish. Brain Res. 1975 Oct 31;97(2):291–301. doi: 10.1016/0006-8993(75)90451-5. [DOI] [PubMed] [Google Scholar]
  2. Barondes S. H. Synaptic macromolecules: identification and metabolism. Annu Rev Biochem. 1974;43(0):147–168. doi: 10.1146/annurev.bi.43.070174.001051. [DOI] [PubMed] [Google Scholar]
  3. Blobel G., Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975 Dec;67(3):835–851. doi: 10.1083/jcb.67.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burnham P., Raiborn C., Varon S. Replacement of nerve-growth factor by ganglionic non-neuronal cells for the survival in vitro of dissociated ganglionic neurons. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3556–3560. doi: 10.1073/pnas.69.12.3556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Danes B. S., Bearn A. G. Hurler's syndrome: a genetic study of clones in cell culture with particular reference to the Lyon hypothesis. J Exp Med. 1967 Sep 1;126(3):509–522. doi: 10.1084/jem.126.3.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Droz B., Rambourg A., Koenig H. L. The smooth endoplasmic reticulum: structure and role in the renewal of axonal membrane and synaptic vesicles by fast axonal transport. Brain Res. 1975 Jul 25;93(1):1–13. doi: 10.1016/0006-8993(75)90282-6. [DOI] [PubMed] [Google Scholar]
  7. Gainer H., Carbone E., Singer I., Sisco K., Tasaki I. Depolarization-induced change in the enzymatic radio-iodination of a protein of the internal surface of the squid giant, axon membrane. Comp Biochem Physiol A Comp Physiol. 1974 Feb 1;47(2):477–484. doi: 10.1016/0300-9629(74)90011-5. [DOI] [PubMed] [Google Scholar]
  8. Gainer H., Tasaki I., Lasek R. J. Evidence for the glia-neuron protein transfer hypothesis from intracellular perfusion studies of squid giant axons. J Cell Biol. 1977 Aug;74(2):524–530. doi: 10.1083/jcb.74.2.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gambetti P., Autilio-Gambetti L. A., Gonatas N. K., Shafer B. Protein synthesis in synaptosomal fractions. Ultrastructural radioautographic study. J Cell Biol. 1972 Mar;52(3):526–535. doi: 10.1083/jcb.52.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Giuditta A., D'Udine B., Pepe M. Uptake of protein by the giant axon of the squid. Nat New Biol. 1971 Jan 6;229(1):29–30. doi: 10.1038/newbio229029a0. [DOI] [PubMed] [Google Scholar]
  11. Giuditta A., Dettbarn W. D., Brzin M. Protein synthesis in the isolated giant axon of the squid. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1284–1287. doi: 10.1073/pnas.59.4.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Globus A., Lux H. D., Schubert P. Transfer of amino acids between neuroglia cells and neurons in the leech ganglion. Exp Neurol. 1973 Jul;40(1):104–113. doi: 10.1016/0014-4886(73)90127-1. [DOI] [PubMed] [Google Scholar]
  13. Grafstein B., Laureno R. Transport of radioactivity from eye to visual cortex in the mouse. Exp Neurol. 1973 Apr;39(1):44–57. doi: 10.1016/0014-4886(73)90040-x. [DOI] [PubMed] [Google Scholar]
  14. Hendry I. A., Stöckel K., Thoenen H., Iversen L. L. The retrograde axonal transport of nerve growth factor. Brain Res. 1974 Mar 15;68(1):103–121. doi: 10.1016/0006-8993(74)90536-8. [DOI] [PubMed] [Google Scholar]
  15. Henrikson C. K., Vaughn J. E. Fine structural relationships between neurites and radial glial processes in developing mouse spinal cord. J Neurocytol. 1974 Dec;3(6):659–675. doi: 10.1007/BF01097190. [DOI] [PubMed] [Google Scholar]
  16. Heslop J. P., Howes E. A. Temperature and inhibitor effects on fast axonal transport in a molluscan nerve. J Neurochem. 1972 Jul;19(7):1709–1716. doi: 10.1111/j.1471-4159.1972.tb06215.x. [DOI] [PubMed] [Google Scholar]
  17. Hoffman P. N., Lasek R. J. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol. 1975 Aug;66(2):351–366. doi: 10.1083/jcb.66.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jethmal E., Koenig E. Effect of electrical stimulation of nerve roots on amino-acid incorporation into axonal protein in vitro. Nat New Biol. 1973 Jan 3;241(105):28–29. doi: 10.1038/newbio241028a0. [DOI] [PubMed] [Google Scholar]
  19. Johnson D. G., Silberstein S. D., Hanbauer I., Kopin I. J. The role of nerve growth factor in the ramification of sympathetic nerve fibres into the rat iris in organ culture. J Neurochem. 1972 Sep;19(9):2025–2029. doi: 10.1111/j.1471-4159.1972.tb05112.x. [DOI] [PubMed] [Google Scholar]
  20. Koenig E. Synthetic mechanisms in the axon. IV. In vitro incorporation of [3H]precursors into axonal protein and RNA. J Neurochem. 1967 Apr;14(4):437–446. doi: 10.1111/j.1471-4159.1967.tb09542.x. [DOI] [PubMed] [Google Scholar]
  21. Kuffler S. W., Nicholls J. G. The physiology of neuroglial cells. Ergeb Physiol. 1966;57:1–90. [PubMed] [Google Scholar]
  22. Larrabee M. G., Brinley F. J., Jr Incorporation of labelled phosphate into phospholipids in squid giant axons. J Neurochem. 1968 Jul;15(7):533–545. doi: 10.1111/j.1471-4159.1968.tb08953.x. [DOI] [PubMed] [Google Scholar]
  23. Lasek R. J., Dabrowski C., Nordlander R. Analysis of axoplasmic RNA from invertebrate giant axons. Nat New Biol. 1973 Aug 8;244(136):162–165. doi: 10.1038/newbio244162a0. [DOI] [PubMed] [Google Scholar]
  24. Lasek R. J., Gainer H., Przybylski R. J. Transfer of newly synthesized proteins from Schwann cells to the squid giant axon. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1188–1192. doi: 10.1073/pnas.71.4.1188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Metuzals J., Izzard C. S. Spatial patterns of threadlike elements in the axoplasm of the giant nerve fiber of the squid (Loligo pealii L.) as disclosed by differential interference microscopy and by electron microscopy. J Cell Biol. 1969 Dec;43(3):456–479. doi: 10.1083/jcb.43.3.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
  27. Paravicini U., Stoeckel K., Thoenen H. Biological importance of retrograde axonal transport of nerve growth factor in adrenergic neurons. Brain Res. 1975 Feb 7;84(2):279–291. doi: 10.1016/0006-8993(75)90982-8. [DOI] [PubMed] [Google Scholar]
  28. Parkhouse R. M., Allison A. C. Failure of cytochalasin or colchicine to inhibit secretion of immunoglobulins. Nat New Biol. 1972 Feb 16;235(59):220–222. doi: 10.1038/newbio235220a0. [DOI] [PubMed] [Google Scholar]
  29. Pepe I. M., Giuditta A., Cimarra P. Inhibition of neuronal protein synthesis in the giant fibre system of the squid by a high potassium concentration. J Neurochem. 1975 Jun;24(6):1271–1273. doi: 10.1111/j.1471-4159.1975.tb03911.x. [DOI] [PubMed] [Google Scholar]
  30. Pevzner L. Z. Topochemical aspects of nucleic acid and protein metabolism within the neuron-neuroglia unit of the superior cervical ganglion. J Neurochem. 1965 Dec;12(12):993–1002. doi: 10.1111/j.1471-4159.1965.tb10259.x. [DOI] [PubMed] [Google Scholar]
  31. ROBERTS N. R., COELHO R. R., LOWRY O. H., CRAWFORD E. J. Enzyme activities of giant squid axoplasm and axon sheath. J Neurochem. 1958 Dec;3(2):109–115. doi: 10.1111/j.1471-4159.1958.tb12616.x. [DOI] [PubMed] [Google Scholar]
  32. Rakic P., Sidman R. L. Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. J Comp Neurol. 1973 Nov 15;152(2):103–132. doi: 10.1002/cne.901520202. [DOI] [PubMed] [Google Scholar]
  33. Redman C. M., Banerjee D., Howell K., Palade G. E. Colchicine inhibition of plasma protein release from rat hepatocytes. J Cell Biol. 1975 Jul;66(1):42–59. doi: 10.1083/jcb.66.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sarne Y., Neale E. A., Gainer H. Protein metabolism in transected peripheral nerves of the crayfish. Brain Res. 1976 Jun 25;110(1):73–89. doi: 10.1016/0006-8993(76)90209-2. [DOI] [PubMed] [Google Scholar]
  35. Sarne Y., Schrier B. K., Gainer H. Evidence for the local synthesis of a transmitter enzyme (glutamic acid decarboxylase) in crayfish peripheral nerve. Brain Res. 1976 Jun 25;110(1):91–97. doi: 10.1016/0006-8993(76)90210-9. [DOI] [PubMed] [Google Scholar]
  36. Schwartz J. H., Castellucci V. F., Kandel E. R. Functioning of identified neurons and synapses in abdominal ganglion of Aplysia in absence of protein synthesis. J Neurophysiol. 1971 Nov;34(6):939–953. doi: 10.1152/jn.1971.34.6.939. [DOI] [PubMed] [Google Scholar]
  37. Simpson I., Rose B., Loewenstein W. R. Size limit of molecules permeating the junctional membrane channels. Science. 1977 Jan 21;195(4275):294–296. doi: 10.1126/science.831276. [DOI] [PubMed] [Google Scholar]
  38. Singer M., Salpeter M. M. The transport of 3H-l-histidine through the Schwann and myelin sheath into the axon, including a reevaluation of myelin function. J Morphol. 1966 Nov;120(3):281–315. doi: 10.1002/jmor.1051200305. [DOI] [PubMed] [Google Scholar]
  39. Stöckel K., Paravicini U., Thoenen H. Specificity of the retrograde axonal transport of nerve growth factor. Brain Res. 1974 Aug 23;76(3):413–421. doi: 10.1016/0006-8993(74)90818-x. [DOI] [PubMed] [Google Scholar]
  40. Temple R., Williams J. A., Wilber J. F., Wolff J. Colchicine and hormone secretion. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1454–1461. doi: 10.1016/s0006-291x(72)80140-2. [DOI] [PubMed] [Google Scholar]
  41. Varon S., Raiborn C. Dissociation of chick embryo spinal ganglia and the effects on cell yields by the mouse 7S nerve growth factor protein. Neurobiology. 1972;2(3):106–122. [PubMed] [Google Scholar]
  42. Varon S., Saier M. Culture techniques and glial-neuronal interrelationships in vitro. Exp Neurol. 1975 Sep;48(3 Pt 2):135–162. doi: 10.1016/0014-4886(75)90174-0. [DOI] [PubMed] [Google Scholar]
  43. Villegas G. M. Electron microscopic study of the giant nerve fiber of the giant squid Dosidicus gigas. J Ultrastruct Res. 1969 Mar;26(5):501–504. doi: 10.1016/s0022-5320(69)90054-9. [DOI] [PubMed] [Google Scholar]
  44. Villegas G. M., Villegas J. Structural complexes in the squid giant axon membrane sensitive to ionic concentrations and cardiac glycosides. J Cell Biol. 1976 Apr;69(1):19–28. doi: 10.1083/jcb.69.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Villegas J. Characterization of acetylcholine receptors in the Schwann cell membrane of the squid nerve fibre. J Physiol. 1975 Aug;249(3):679–689. doi: 10.1113/jphysiol.1975.sp011037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Villegas J. Effects of tubocurarine and eserine on the axon-Schwann cell relationship in the squid nerve fibre. J Physiol. 1973 Jul;232(1):193–208. doi: 10.1113/jphysiol.1973.sp010264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Young J. Z. The organization of a cephalopod ganglion. Philos Trans R Soc Lond B Biol Sci. 1972 Mar 16;263(854):409–429. doi: 10.1098/rstb.1972.0005. [DOI] [PubMed] [Google Scholar]
  48. Zelená J. Ribosomes in myelinated axons of dorsal root ganglia. Z Zellforsch Mikrosk Anat. 1972;124(2):217–229. doi: 10.1007/BF00335680. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES